Targeted Phase II Detailed Site Investigation Honeycomb Drive, Eastern Creek NSW Prepared for: The Next Generation (TNG) Pty Ltd

7773 / TDSI1 v1. final 6th August, 2014

R

Prepared for:

The Next Generation (TNG) Pty Ltd

Targeted Phase II Detailed Site Investigation

Honeycomb Drive, Eastern Creek NSW

Version	Details	Date
v1 final	Written by Dylan Jones	6 th August, 2014

Report No:

Reviewed By:

Written by:

7773 / TDSI1 / v1 final

Date:

6th August, 2014

Thomas Lobsey B. Sc (L & W Sc.)

the

Dylan Jones B. Env. Sci. & Mgt.

This report is copyright. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without permission in writing from A. D.

Envirotech Australia Pty Ltd.

EXEC	CUTIVE SUMMARY	7
1	INTRODUCTION	13
1.1 1.2	General Objectives	13
1.3	Scope of Work	
1.4 1.5	Legislative Requirements	
2	SITE IDENTIFICATION AND PHYSICAL SETTING	
2.1	Site Location	15
2.2	Site Identification and Description	16
3	SITE HISTORY AND PREVIOUS INVESTIGATIONS	20
3.1	Historical Land and Title Search	20
3.2	Aerial Photographs Review	
3.3	Contaminated Land Register Search	
3.4 2.5	Section 149 WorkCover NSW	
3.5 3.6	ADE Report: 7438 Honeycomb Drive, Eastern Creek NSW.PSI v1 final	
4	DATA QUALITY OBJECTIVES	24
4.1	Statement of Problem	24
4.2	Identification of Decision	25
4.3	Identification of Inputs to Decision	
4.4	Definition of Study Boundaries	
4.5	Development of Decision Rule	
4.6 4.7	Specification of Tolerable Limits on Decision Errors Data Collection Design	
5	SITE INVESTIGATION DESIGN AND METHODOLOGY	
5.1	Investigation Design	29
5.2	Potential Contamination Types	
5.3	Primary Transport Mechanisms	29
5.4	Potential Contamination Receptors	
5.5	Site Conceptual Contamination Model	
5.6	Field Investigation Procedures	
6	SAMPLING AND ANALYTICAL PROGRAM	
7	ASSESSMENT CRITERIA	
7.1	Soil Assessment Criteria	
8	RESULTS AND DISCUSSION	
8.1	Field Observations	
8.2 8.3	Soil - Site Contamination (HILs) and Preliminary Waste Classification	
8.3 8.4	Soil – Ecological Screening / Investigation Levels Asbestos	
8.4 8.5	Sediment – ANZECC Guidelines for Fresh and Marine Water – Sediment Guidelines	
8.6	Sediment – ANZECC Guidennes for Presh and Marme Water – Sediment Guidennes	
8.7	Surface Water – ANZECC Guidelines for Fresh and Marine Water (95% Species Protectio	
9	DATA QUALITY ASSESSMENT	47

TABLE OF CONTENTS

9.1 9.2		Data Review 47 QA/QC Data Evaluation 54					
10		CONCLUSIONS					
10.1 10.2 10.3 10.4 10.5 10.6	L0.2 Soil Contamination Investigation L0.3 Sediment L0.4 Surface Water L0.5 Preliminary Waste Classification						
11	LIMITATIO	NS60					
12	REFERENC	ES61					
APPE	NDIX I	PHOTOGRAPHS62					
APPE	NDIX II	LAND AND PROPERTY RECORDS66					
APPE	NDIX III	AERIAL PHOTOGRAPHS67					
APPE	NDIX IV	CONTAMINATED LAND SEARCH68					
APPE	NDIX V	SECTION 149 CERTIFICATE					
APPE	NDIX VI	RESULTS TABLE					
APPENDIX VII		ANALYTICAL REPORTS					
APPENDIX VIII		BOREHOLE LOGS					
APPE		WORKCOVER CONTAMINATED GOODS SEARCH7					
APPE		CHAIN OF CUSTODY					
APPE	NDIX XI	CALIBRATION CERTIFICATES					

LIST OF TABLES

TABLE 1. SUMMARY OF SOIL SAMPLING RESULTS	8
TABLE 2. SUMMARY OF SEDIMENT SAMPLING RESULTS	9
TABLE 3. SUMMARY OF SURFACE WATER SAMPLING RESULTS	10
TABLE 4. SUMMARY OF SITE IDENTIFICATION DETAILS	16
TABLE 5. SUMMARY OF KEY SITE FEATURES.	17
TABLE 6. LIST OF GROUNDWATER BORES WITHIN 1 KM RADIUS OF SITE.	18
TABLE 7. SUMMARY OF LTO RECORDS FOR LOT 2 IN DEPOSITED PLAN (DP) 1145808 (REFER TO APPENDIX II –	
Land and Property Records)	20
TABLE 8. SUMMARY OF AERIAL PHOTOGRAPHY	21
TABLE 9. SOURCES AND TYPES OF CONTAMINANTS THAT MAY BE PRESENT ON SITE.	29
TABLE 10. SITE CONCEPTUAL CONTAMINATION MODEL.	31
TABLE 11. SAMPLING AND ANALYTICAL PROGRAM FOR SITE INVESTIGATION	36
TABLE 12. SITE ASSESSMENT CRITERIA FOR SOIL CONTAMINATION, MG/KG (UNLESS OTHERWISE SPECIFIED)	40
TABLE 13. SITE ASSESSMENT CRITERIA FOR SEDIMENT CONTAMINATION.	41
TABLE 14. SITE ASSESSMENT CRITERIA FOR SURFACE WATER CONTAMINATION.	42
TABLE 15. ANALYSIS RESULTS OF ASBESTOS SAMPLES	45
TABLE 16. COMPARISON OF ORIGINAL SAMPLE 7773-BH08-A AND BLIND REPLICATE 7773-BR1 SOIL SAMPLES	
ANALYSED BY EOH&S LABORATORY, MG/KG	50
TABLE 17. COMPARISON OF ORIGINAL SAMPLE 7773-BH16-A AND BLIND REPLICATE 7773-BR2 SOIL SAMPLES	
ANALYSED BY EOH&S LABORATORY, MG/KG	50
TABLE 18. COMPARISON OF ORIGINAL SAMPLE 7773-SW-04 AND BLIND REPLICATE 7773-SW-BR1 WATER	
SAMPLES ANALYSED BY EOH&S LABORATORY, MG/KG	51
TABLE 19. ANALYSIS OF RINSATE SAMPLE 7773-RINSATE1, μG/L	52
TABLE 20. ANALYSIS RESULTS OF SPIKED BTEX SAMPLE 7773-VOC-SPIKE1 ANALYSED BY ENVIRONMENTAL AND	
OH&S LABORATORY, μG/L	53
TABLE 21. ANALYSIS RESULTS OF SPIKED VOC SAMPLE 7773-VOC-SPIKE2 ANALYSED BY ENVIRONMENTAL AND	
OH&S Laboratory, μg/L	53
TABLE 22. COMPARISON OF SPLIT SOIL SAMPLE 7773-SP1 ANALYSED BY EUROFINS I MGT AND SOIL SAMPLE	
7773-BH05-A ANALYSED BY ENVIRONMENTAL AND OH&S LABORATORY, MG/KG	53
TABLE 23. SUMMARY OF DQO RECONCILIATION.	56

LIST OF FIGURES

Figure 1. Aerial photograph of the subject site outlined in red (Aerial photograph from Urbis;	
ACCESSED ON 30.04.2014)	15
FIGURE 2. AERIAL PHOTOGRAPH OF THE SUBJECT SITE AND APPROXIMATE REPRESENTATIVE SAMPLE LOCATIONS	
(PHOTOGRAPH ADAPTED FROM WWW.MAPS.GOOGLE.COM.AU, ACCESSED 09.07.2014)	16

LIST OF ABBREVIATIONS

ADE	A.D. Envirotech Australia Pty Ltd			
ASS	Acid Sulphate Soils			
BGS/L	Below ground surface/level			
BR	Blind Replicate			
BTEX	Benzene, toluene, ethyl-benzene, xylene			
CN	Cyanide			
COC	Chain of Custody			
DQI	Data Quality Indicators			
DQO	Data Quality Objectives			
TDSI	Targeted Detailed Site Investigation			
EPA	Environmental Protection Authority			
HILs	Health Investigation Levels			
LPI	Land Property Information			
LTO	Land Titles Office			
MGT	Eurofins I MGT Environmental Pty Ltd			
NATA	National Association of Testing Authorities			
NSW EPA	New South Wales Environmental Protection Authority			
OEH	Office of Environment and Heritage			
OPPs	Organophosphorous Pesticides			
OCPs	Organochlorine Pesticides			
PAHs	Polycyclic Aromatic Hydrocarbons			
PASS	Potential Acid Sulphate Soils			
PASSA	Preliminary Acid Sulphate Soils Assessment			
PCBs	Polychlorinated Biphenyls			
PPILs	Provisional Phytotoxicity-based Investigation Levels			
PSI	Preliminary Site Investigation			
QA/QC	Quality Assurance/Quality Control			
RPD	Relative Percent Difference			
SCID	Stored Chemical Information Database			
SMF	Synthetic Mineral Fibre			
SWL	Standing Water Level			
TRH	Total Recoverable Hydrocarbons			
UCL	Upper Confidence Limit			
VHC	Volatile Halogenated Compounds			
TNG	The Next Generation			

EXECUTIVE SUMMARY

A.D. Envirotech Australia Pty Ltd (ADE) was engaged by TNG to undertake a Targeted Phase II Detailed Site Contamination Investigation (DSI) to assess the current level of contamination of the site at Honeycomb Drive, Eastern Creek NSW (hereafter referred to as the 'site'), prior to TNG taking possession of the site for the construction of an 'Energy from Waste Facility'.

The plant will allow for unsalvageable and uneconomic residue waste from the Genesis Material Processing Centre (MPC) and Waste Transfer Station (WTS) to be used for the generation of electrical power.

This report was completed in accordance with the *Guidelines for Consultants Reporting on Contaminated Sites,* NSW EPA, September 2000. It follows on from ADE Report #7438 Preliminary Site Investigation (PSI) *Honeycomb Drive, Eastern Creek NSW.* As the PSI raised low risk concerns, a reduced number of sampling locations were selected in 'targeted' locations. As such, no maximum hotspot size can confidentially be determined.

Objectives

The objectives of the investigation were to:

- Provide information on the issues raised in the Phase I Preliminary Investigation;
- Discuss the site condition;
- Assess and describe the source, type, extent and level of contamination (if present) within the top 0.5 m of soil materials BGL, and within the two (2) soil stockpiles;
- Assess and describe the source, type, extent and level of contamination (if present) within the surface water and sediment within the creek which runs through the subject area;
- Determine the human health and environmental risk (if present); and
- Provide a preliminary waste classification in accordance with the adopted NSW EPA *Waste Classification* Guidelines.

The **Scope of Works** included the following:

Phase One:A review of available information of historical data and previous Phase I Preliminary
Site Contamination Assessment.

Phase Two: The carrying out of a contaminated site investigation based on the findings of the Phase I Preliminary Site Contamination Assessment.

Phase Three: Submission of samples for analysis and the preparation of a Stage II Detailed Site Investigation Report (DSI).

Summary of Contamination Investigation

A total number of twenty five (25) discrete soil and sediment samples were collected from twenty five (25) sample points throughout the site including boreholes, stockpiles and creek beds (excluding QA/QC samples). Four (4) surface water samples were collected from four (4) sample points along the creek.

Criteria applied included the NEPM Schedule B(1) Health Based Investigation Levels (HIL) D, Ecological Screening Levels (commercial/industrial), NSW EPA *Waste Classification Guidelines Part 1: Classifying Waste* for off-site disposal and ANZECC Guidelines for Fresh and Marine Water Quality.

Summary of the sample results can be found below in Table 1, Table 2 and Table 3 below.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209

Telephone: NSW: (02) 9648 6669 QLD: (07) 5519 4610

Table 1. Summary of Soil Sampling Results

	Site Assessment Criteria (SAC)			Resul	Results Conclusion				
Analytes	Maximum Values of Total Concentration Assigned for General Solid Waste CT1/CT2 (mg/kg)	Maximum Values of Total Concentration Assigned for General Solid Waste TCLP1 (mg/L)/ SCC1 (mg/kg)	Ecological Screening ⁶ / Investigation Levels ⁶ / (EILs / ESLs) (mg/kg)	Commercial / Industrial (HIL D) (mg/kg dry soil)	Maximum Total Concentration Detected (mg/kg)	95 % Upper Confidence Limit (UCL), (mg/kg)	General Solid Waste	Commercial / Industrial (HIL D)	Ecological Screening ⁶ / Investigation Levels ⁶
Arsenic	100/400	5/500	160 ⁵	3000 ⁵	25.2	-	Acceptable	Acceptable	Acceptable
Cadmium	20/80	1/100	NA	900	ND	-	Acceptable	Acceptable	Acceptable
Chromium	100/400	5/1900	NA	3600	140	51.6	Acceptable	Acceptable	Acceptable
Copper	NA	NA	NA	240 000	86.4	-	Acceptable	Acceptable	Acceptable
Lead	100/400	5/1500	NA	1500	160	44.6	Acceptable	Acceptable	Acceptable
Mercury	4/16	0.2/50	NA	730	0.27	-	Acceptable	Acceptable	Acceptable
Nickel	40/160	2/1050	NA	6000	130	31.6	Acceptable	Acceptable	Acceptable
Zinc	NA	NA	NA	400 000	240	-	Acceptable	Acceptable	Acceptable
TRH Fraction $C_6 - C_{10}$	NA	NA/650	215	NA	ND	-	Acceptable	Acceptable	Acceptable
TRH Fraction C ₁₀ - C ₄₀	NA	NA/10000	NA	NA	350	-	Acceptable	Acceptable	Acceptable
TRH Fraction C ₁₀ -C ₁₆	NA	NA	170 ³	NA	ND	-	Acceptable	Acceptable	Acceptable
TRH Fraction C ₁₆ -C ₃₄	NA	NA	1700 ³	NA	140	-	Acceptable	Acceptable	Acceptable
TRH Fraction C ₃₄ -C ₄₀	NA	NA	3300 ³	NA	160	-	Acceptable	Acceptable	Acceptable
DDT + DDD + DDE	NA	NA	NA	3600	ND	-	Acceptable	Acceptable	Acceptable
DDT	NA	NA	640	NA	ND	-	Acceptable	Acceptable	Acceptable
Aldrin + Dieldrin	NA	NA	NA	45	ND	-	Acceptable	Acceptable	Acceptable
Chlordane	NA	NA	NA	530	ND	-	Acceptable	Acceptable	Acceptable
Endosulfan	60/240	3/108	NA	NA	ND	-	Acceptable	Acceptable	Acceptable
Benzene	10/40	0.5/18	75 ³	NA	NT	-	Acceptable	Acceptable	Acceptable
Toluene	288/1152	14.4/518	135 ³	NA	NT	-	Acceptable	Acceptable	Acceptable
Ethyl-benzene	600/2400	30/1080	165 ³	NA	NT	-	Acceptable	Acceptable	Acceptable
Xylenes (total)	1000/4000	50/1800	95 ⁴	NA	NT	-	Acceptable	Acceptable	Acceptable
Benzo(a)pyrene	0.8/3.2	0.04/10	1.4	NA	0.56	-	Acceptable	Acceptable	Acceptable
Carcinogenic PAHs (as BaP TEQ) ²	NA	NA	NA	40	1.1	-	Acceptable	Acceptable	Acceptable
PAH total	NA	NA/200	NA	4000	7.3	-	Acceptable	Acceptable	Acceptable
Naphthalene	NA	NA	370	NA	ND	-	Acceptable	Acceptable	Acceptable
PCBs	NA	NA/<50	NA	7	ND	-	Acceptable	Acceptable	Acceptable
Phenol	NA	NA	NA	240 000	ND	-	Acceptable	Acceptable	Acceptable
Pentachlorophenal	NA	NA	NA	660	ND	-	Acceptable	Acceptable	Acceptable
Cresols	NA	NA	NA	25 000	ND	-	Acceptable	Acceptable	Acceptable

Notes to table

ND – Not detected/below Practical Quantitation Limit (PQL)

NA – Not Applicable

¹Adjusted criteria due to sample composition

²Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF. ³Coarse soil texture was adopted

⁴Fine soil texture was adopted

⁵The arsenic is considered aged. Aged values are applicable to arsenic contamination present in soil for at least two years.

⁶Values provided for commercial/industrial land use.

Table 2. Summary of Sediment Sampling Results

	Site As	sessment Criter	ia (SAC)	Results	Conclusion		
Analytes	ANZECC Interim Sediment Quality Guidelines- Low ¹ (Trigger value) (mg/kg)	ANZECC Interim Sediment Quality Guidelines- High ¹ (mg/kg)	Ecological Screening ⁴ / Investigation Levels ⁴ / (EILs / ESLs) (mg/kg)	Maximum Total Concentration Detected (mg/kg)	ANZECC Interim Sediment Quality Guidelines- Low ¹ (Trigger value) (mg/kg)	ANZECC Interim Sediment Quality Guidelines- High ¹ (mg/kg)	Ecological Screening ⁶ / Investigation Levels ⁶ / (EILs / ESLs) (mg/kg)
Arsenic	20	70	-	22	Investigate	Acceptable	N/A
Cadmium	1.5	10.0	-	ND	Acceptable	Acceptable	N/A
Chromium	80	370	-	37	Acceptable	Acceptable	N/A
Copper	65	270	-	27	Acceptable	Acceptable	N/A
Lead	50	220	-	31	Acceptable	Acceptable	N/A
Mercury	0.15	1.0	-	ND	Acceptable	Acceptable	N/A
Nickel	21	52	-	29	Investigate	Acceptable	N/A
Zinc	200	410	-	54	Acceptable	Acceptable	N/A
TRH $C_6 - C_{10}$	-	-	215	ND	N/A	N/A	Acceptable
TRH C ₁₀ - C ₄₀	-	-	NA	ND	N/A	N/A	Acceptable
TRH C ₁₀ -C ₁₆	-	-	170 ³	ND	N/A	N/A	Acceptable
TRH C ₁₆ -C ₃₄	-	-	1700 ³	ND	N/A	N/A	Acceptable
TRH C ₃₄ -C ₄₀	-	-	3300 ³	ND	N/A	N/A	Acceptable
Naphthalene	160	2100	-	ND	Acceptable	Acceptable	N/A
Benzo(a)pyrene	430	1600	-	ND	Acceptable	Acceptable	N/A
B(a)P TEQ ²	-	-	-	7.8	Acceptable	Acceptable	N/A
Total PAH	4000	45000	-	<4.8	Acceptable	Acceptable	N/A

Notes to table

ND – Not detected/below Practical Quantitation Limit (PQL)

NA – Not Applicable

¹ANZECC Guidelines for Water Quality, 2000

²Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF.

³Coarse soil texture was adopted ⁴ Values provided for commercial/industrial land use.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610
 Internet:

 site:
 www.ADenvirotech.com.au

 e-mail:
 info@ADenvirotech.com.au

ABN: 520 934 529 50

Page **9** of **75**

Table 3. Summary of Surface Water Sampling Results

	Site Assessment Criteria (SAC)	Results	Conclusion
Analytes	Adjusted ANZECC (2000) Guidelines for Fresh Water Quality ² 95% Species Protection (μg/L)	Maximum Total Concentration Detected (µg/L)	Adjusted ANZECC (2000) Guidelines for Fresh Water Quality ² 95% Species Protection (μg/L)
Arsenic	13 ^f	ND	Acceptable
Cadmium	2 ⁵	ND	Acceptable
Chromium	8.4 ^{5e}	ND	Acceptable
Copper	12.6 ⁵	3	Acceptable
Lead	90.8 ⁵	ND	Acceptable
Mercury	0.06 ^b	ND	Acceptable
Nickel	99 ⁵	2	Acceptable
Zinc	72 ^{5d}	ND	Acceptable
TRH >C6 – C10	150 ³	ND	Acceptable
TRH >C10 - C16		ND	Acceptable
TRH >C16 – C34	600 ⁴	ND	Acceptable
TRH >C34 – C40	7	ND	Acceptable
Naphthalene	16	ND	Acceptable
Anthracene	0.01 ^{a,b}	ND	Acceptable
Phenanthrene	0.6 ^{a,b}	ND	Acceptable
Fluoranthene	1.0 ^{a,b}	ND	Acceptable
Benzo(a)pyrene	0.1 ^{a,b}	ND	Acceptable

Notes to Table:

1 - Circular on Target Values and Intervention Values for soil remediation, Ministry of Housing, Spatial Planning and Environment, 2000 (Netherlands).

2 -Trigger values adopted (level of protection: 95% of species for slightly-moderately disturbed systems), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000.

a. In the absence of a high reliability concentration, the moderate or low reliability guideline concentration has been adopted.

b. Due to the potential for the chemical to bioaccumulate, a 99% percent protection level has been adopted.

c. As the two isomers m-Xylene and p-Xylene cannot be distinguished analytically, the lower threshold of 75 µg/l has been adopted.

d. Figure may not protect key species from chronic toxicity, ANZECC 2000.

e. As total concentration was reported for the analyte, the most stringent valence threshold was adopted.

f. As total Arsenic is provided in analytical results, the most stringent criteria of As III and As V has been adopted.

g. 99% protection recommended for 'slightly-moderately' disturbed systems.

3 - No current NSW DECCW adopted criteria. Recommended applicable criteria for screening purposes.

4 - Maximum of 600 μg/l for sum of TRH>C10-C40 (adapted from Netherlands Intervention Values¹).

5 - Adjusted trigger value for 'Extremely Hard' water (>400 mg/L CaCo₃)

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209

Telephone: NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

ABN: 520 934 529 50

Page 10 of 75

<u>SOIL</u>

A. NEPM Schedule B(1) HIL (D) guideline values

The area investigated, defined by the scope of works meets the NEPM Schedule B (1) HIL (D) guideline in soil with respect to heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), PAHs, OCPs/OPPs, Phenols and PCBs.

B. Ecological Screening Levels

All samples meet the NEPM B(1) Ecological Screening Level (Commercial and Industrial) assessment criteria in soil with regard to TRH, Naphthalene, Benzo(a)pyrene, Arsenic and DDT.

C. Asbestos

No asbestos was observed during the investigation works. Five samples were collected within areas of fill materials. None of the five (5) soil samples collected during the investigations contained asbestos.

D. Preliminary in Situ Waste Classification

The concentrations of metals (As, Cr, Cd, Hg, Cu, Pb, Ni and Zn), Benzo(a)pyrene, petroleum hydrocarbons (TRH), poly-aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs) in the soil samples collected meet the NSW EPA criteria assigned for General Solid Waste.

NOTE: This in situ preliminary waste classification is indicative only. The sampling frequency of further testing will be dependent on the projected volumes of soil to be removed and transported to an EPA licensed landfill.

SEDIMENT

A. ANZECC Guidelines for Fresh and Marine Water Quality – Sediment Guidelines

The sediment samples collected from the creek meet the ANZECC Guidelines for Sediment Quality with respect to PAH.

The sediment samples collected from the creek meet the ANZECC Guidelines for Sediment Quality with respect to heavy metals (cadmium, chromium, copper, lead, mercury and zinc).

One (1) sediment sample slightly exceeds the ANZECC Guidelines for ISQG-Low criteria of 20 (mg/kg) for Arsenic (As) and 21 (mg/kg) for Nickel (Ni). This sample was collected from SS-02 (refer to **Figure 2** for sample locations).

Elevated concentrations of As and Ni could be explained by the current state of the creek. It was observed that the creek was ephemeral in nature. At the time of the investigation, the water was not running, the water depth was no greater than 0.2 m and dry in many sections. As a result, this may increase concentrations of heavy metals in the creek sediment due to precipitation of heavy metals in water.

Furthermore, it is also possible that background ranges of As and Ni within the soil and rock located outside the site, upstream of the creek, may have caused a natural increase in the creek sediment concentrations of metals within the site.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

It should be noted, during the field investigation works no aquatic animals or amphibians were observed in or around the creek.

Taking into account the above and based on the creeks size and capacity, the impact of the slightly increased concentrations of Arsenic and Nickel on water ecological health within the creek and greater river catchment is considered minimal and therefore does not warrant any further investigations and the results are deemed acceptable.

B. Ecological Screening Levels

All samples meet the NEPM B(1) Ecological Screening Level (Commercial and Industrial) assessment criteria in soil with regard to TRH.

SURFACE WATER

A. ANZECC Guidelines for Fresh Water Quality Guideline Values

Total Recoverable Hydrocarbons (TRH)

The concentrations of TRH fractions were observed below the adopted site assessment criteria.

Polycyclic Aromatic Hydrocarbons (PAHs)

The concentrations of Anthracene, Naphthalene, Phenanthrene, Fluoranthene and Benzo(a)pyrene were observed below the adopted site assessment criteria.

Dissolved Heavy Metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn)

The concentration of dissolved metals As, Cd, Cu, Cr, Pb, Hg, Ni and Zn were observed below the adopted site assessment criteria.

OVERALL CONTAMINATION STATUS OF SITE

It is the opinion of ADE that no contamination of the site from potential contaminating practices undertaken both on and off site, had occurred prior to the time the investigation took place.

The concentrations of the potential contaminants within the soil, sediment and surface water samples collected were below the NEPM Schedule B (1) Health Based Investigation Levels (HIL) D, Ecological Screening Levels (commercial/industrial) and ANZECC Guidelines for Fresh and Marine Water Quality assessment criteria's.

Based on the findings of the detailed site investigation, the site is deemed suitable for commercial/industrial land use and the proposed development.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> ABN: 520 934 529 50

Page 12 of 75

1 INTRODUCTION

1.1 General

A.D. Envirotech Australia Pty Ltd (ADE) was engaged by TNG to undertake a Targeted Stage II Detailed Site Investigation (DSI) to assess the levels of possible contamination prior to the commencement of TNG construction activities on the site at Honeycomb Drive, Eastern Creek NSW.

This report was completed in accordance with the *Guidelines for Consultants Reporting on Contaminated Sites*, NSW EPA, September 2000.

1.2 Objectives

The objectives of the investigation were to:

- Provide comprehensive information on the issues raised in the Phase I Preliminary Investigation;
- Discuss the site condition;
- Assess and describe the source, type, extent and level of contamination (if present);
- Determine the human health and environmental risk (if present); and
- Provide a preliminary waste classification in accordance with the NSW EPA *Waste Classification* Guidelines.

1.3 Scope of Work

The scope of work required to achieve the objectives of the investigation involved the following:

1.3.1 Phase One

- Completion of a specialised Safety, Health & Environment Work Method Statement (SH&EWMS);
- Review of preliminary site investigation; and
- Review of past and current activities on the site.

1.3.2 Phase Two

- Site Inspection by an experienced team of environmental scientists;
- Drilling of twenty one (21) boreholes covering the site in a grid and judgmental pattern;
- Soil sampling of material from the soil surface to a maximum depth of 0.5 m below ground level (BGL), at any changes in soil stratigraphy or within any areas of apparent contamination;
- Soil sampling of material from stockpiled materials;
- Sediment sampling within the creek bed at four (4) locations;
- Surface water sampling from four (4) locations within the creek; and
- Cold storage of all samples collected.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

1.3.3. Phase Three

- Submission to a laboratory for analysis under chain of custody conditions;
- Laboratory analysis of soil samples for metals, TRH, PAH, OCPs, OPPs, PCBs, Phenols and Asbestos;
- Laboratory analysis of sediment samples for metals, TRH and PAH;
- Laboratory analysis of water samples for dissolved metals, TRH, PAH, EC, pH and CaCO₃; and
- Preparation of a Targeted Stage II DSI Report outlining the investigation methodology, interpretation of the site data (results), recommendations and conclusions.

1.4 Legislative Requirements

The investigation was conducted in accordance with:

- ANZECC Water Quality Guidelines, October 2000.
- *Guidelines for the NSW Site Auditor Scheme, NSW DEC 2006.*
- Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 2000.
- Assessment of Site Contamination, National Environment Protection (Assessment of Site Contamination) Measure, 2013.
- Australian Standard AS 4482.1 *Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.*
- Australian Standard AS 4482.2 *Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances.*
- Sampling Design Guidelines NSW EPA, 1995.
- Waste Classification Guidelines Part 1: Classifying Waste, DECC, 2009.
- Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008, NSW DECCW 2009.
- Guidelines for the Assessment and Management of Groundwater Contamination, NSW DEC, 2007.
- *Guidelines on the Investigation Levels for Soil and Groundwater,* National Environmental Protection Measure (NEPM) 2013.

1.5 Whole Report

No one section or part of a section, of this report should be taken as giving an overall idea of this report. Each section must be read in conjunction with the whole of this report, including its appendices and attachments.

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: www.ADenvirotech.com.au e-mail: info@ADenvirotech.com.au

2 SITE IDENTIFICATION AND PHYSICAL SETTING

2.1 Site Location

The site is located at Honeycomb Drive as is shown by **Figure 1** below.

Figure 1. Aerial photograph of the subject site outlined in red (Aerial photograph from Urbis; accessed on 30.04.2014).

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

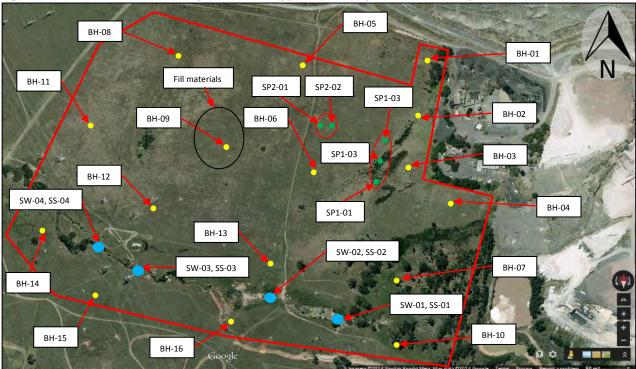


Figure 2 below illustrates the subject site and approximate representative sample locations

Figure 2. Aerial photograph of the subject site and approximate representative sample locations (Photograph adapted from www.maps.google.com.au, accessed 09.07.2014).

Bearings provided in this report are approximate only. For ease of representing locations in the report, the site is considered to be off Honeycomb Drive, a nominal east-west direction assumed. All references to points of the compass within the report are based on these approximate bearings.

2.2 Site Identification and Description

Site identification information is summarised in table 4 below.

Table 4. Summary of Site Identification Details

Site Details				
Site address	Off Honeycomb Drive, Eastern Creek NSW			
Title identification	Lots 2 and 3 of Deposited Plan (DP) 1145808			
Property Lessee/Owner	Next Generation NSW Pty Ltd (TNG NSW)			
Current site use	Pastural / grazing land			
Investigation area	Approximately 15 ha			

2.2.1 Study Area

For the purposes of this report, the study area encompassed the site located at Honeycomb Drive, Eastern Creek NSW (refer to **figure 1**).

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: www.ADenvirotech.com.au e-mail: info@ADenvirotech.com.au

2.2.2 Surrounding Land Use

The immediately surrounding area of the site consists of industrial properties. Genesis landfill facility is situated approximately 200 m north of the northern boundary. East of the site is an asphalt plant which has been functioning since at least 1978. Grazing land and electrical easement lines occur to the south and west of the site. More broadly the surrounding land use is predominantly as grazing land and commercial properties. The M4 Motorway is situated approximately 1 km to the north of the site.

2.2.3 Key Features Observed at the Site

Table 5 summarises the site observations that were recorded during the site inspection which was undertaken on the 26th May 2014.

 Table 5. Summary of key site features.

Feature	Details
Entire site	The site was vacant at the time of inspection and was predominantly covered in vegetation, with some areas of bare soil. All vegetation appeared to be healthy with no visible signs of stress.
	The site was bordered to the north east by an asphalt manufacturing plant and adjacent overflow dam. A creek ran through the southern section of the site, originating from the base of the waste water dam and running in a westerly direction towards Eastern Creek. The creek was not flowing at the time of inspection and had been disconnected in areas due to the shallowness of the water level. The water appeared to be turbid, ordourless and free of non-aqueous phase liquids (NAPL).
	A number of items of rubbish were observed on the soil surface at approximately the centre of the site, in an area which contained dark soil materials inconsistent with the natural soil profile of the site. It was noted that the dark soil appeared to be fill materials.
	The site contained two (2) stockpiles of soil totaling approximately 1200 m^3 . The stockpiled materials appeared to be consistent with the natural soils of the site and had not been imported.
	No concrete or bitumen slabs were observed. Bare soil, organic matter or vegetation covered the entire site.
	It should be noted, during the field investigation works no aquatic animals or amphibians were observed in or around the creek within the site.

General activities within the site area and adjacent areas that may have resulted in contamination include:

- Daily operations of the adjacent asphalt plant;
- The potential overflow from adjacent waste water dam;
- Contaminated fill materials imported to site;
- Deposition of airborne contaminants associated with the asphalt plant;
- Use of pesticides and fertilizers on vegetation and ground cover; and
- Deposition of dust and emissions from vehicle traffic on nearby major roadways.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page 17 of 75

2.2.4 Ground Cover and Vegetation

The entire site ground cover consisted of bare soil, organic matter or vegetation cover with no concrete or bitumen slabs present. All of the vegetation appeared to be healthy with minimal signs of stress.

2.2.5 Site Topography and Hydrology

The site is situated on the side of a valley at an elevation varying between 85 m and 50 m above mean sea level, topography is sloping from north to south towards the onsite creek, with some undulations in various directions. The closest permanent water body would be the dam situated south-east of the site adjacent the asphalt plant and a farm dam to the south-west of the site.

2.2.6 Hydrogeology

It was beyond the scope of work to study the groundwater flow direction. The local groundwater flow is likely to have a southerly direction towards the onsite creek before heading west towards Ropes Creek which flows in a northerly direction and enters South Creek, which also flows in a northerly direction and eventually enters the Hawkesbury River.

Surface water runoff is expected to progress down slope towards the onsite creek before progressing west towards Ropes creek.

Standing water level in surrounding monitoring wells is noted to be approximately 40 m below ground level. Given the location of these wells and the site topography it is expected the standing ground water level in areas of lower elevation such as adjacent to the water course, would be much closer to the surface.

A search for registered groundwater wells within a 2 km radius of the site was undertaken by ADE via the NSW Office of Water (NSW Groundwater works, NR Atlas website). Four (4) groundwater bores were found. No groundwater quality data with regard to contaminants of concern were available within the search area.

A number of groundwater monitoring wells were observed on the site, three (3) wells within metal casings were noted as well as six (6) PVC pipes protruding from the ground were noted. No available groundwater data has been provided by the client.

Bore ID	Use	Completion Date	SWL (mBTOC)	Total depth (m)
GW110311	Monitoring bore	08.07.2009	31.6 m	100 m
GW110313	Monitoring bore	08.07.2009	40.3 m	150 m
GW110312	Monitoring bore	08.07.2009	39.8 m	100 m
GW110314	Monitoring bore	08.07.2009	40.3 m	151 m

Table 6. List of groundwater bores within 1 km radius of site.

2.2.7 Local Geology and Soil

The site is located on a Blacktown Soil Landscape (bt) as indicated on the Penrith Soil Landscape Map, prepared by the Soil Conservation Services of NSW.

The topsoil (A1 Horizon) consists of a friable brownish-black loam with moderately pedal sub angularblocky structure and rough-faced porous ped fabric. The pH ranges from slightly acidic (pH 5.5) to neutral (pH 7.0). Roots are common. Shale and charcoal fragments are sometimes present.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page 18 of 75

Beneath this layer occurs the A2 Horizon consisting of a hardsetting brown clay loam to silty clay loam with an apedal massive to weakly pedal structure and slowly porous earthy fabric. The pH varies from moderately acid (pH 5.0) to slightly acid (pH6.5). Platy ironstone gravel-sized shale fragments are common. Roots and charcoal fragments are absent.

The subsoils consist of two B horizons. The shallow subsoil consists of a strongly pedal, brown light to medium clay with a smooth-faced dense ped fabric. Soil texture often increases with depth as does red, yellow and grey clay mottling. The pH ranges from strongly acidic (pH 4.5) to slightly acidic (pH 6.5). Fine to coarse gravel-sized shale fragments are common, often occurring in stratified bands. Roots and charcoal fragments are rare.

The deep subsoil consists of a plastic light grey silty clay to heavy clay with moderately pedal polyhedral to sub-angular blocky structure and a smooth ped fabric. This material often occurs above a shale bedrock (C Horizon). The pH ranges from strongly acidic (pH 4.0) to moderately acidic (pH 5.5). Strongly weathered ironstone concretions and rock fragments are common. Roots and gravel-sized shale fragments are occasionally present. Charcoal fragments are rare. *Fill Materials*

An area containing soil material inconsistent with local geology were observed to contain waste materials such as shredded paper, plastic etc across an area of approximately 500 - 2000 m². These materials were located along the tracks and paths throughout the centre of the site. The area appeared to be used as a dirt bike track.

2.2.8 Acid Sulphate Soils

A review of the National Acid Sulphate Soils Atlas showed that the site is within an area of no known occurrence of acid sulphate soils.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

3 SITE HISTORY AND PREVIOUS INVESTIGATIONS

3.1 Historical Land and Title Search

The site history has been compiled from information gathered from the Land Titles Office (LTO), Land Property Information (LPI) and Council records.

The site comprises 2 and 3 of Deposited Plan (DP) 1145808 in the Local Government Area of Blacktown Council, Parish of Melville, County of Cumberland.

Table 7. Summary of LTO records for Lot 2 in Deposited Plan (DP) 1145808 (refer to **Appendix II – Land** and **Property Records**).

Date	Transferred/Leased From	Transferred/Leased To	Transfer No.	Certificate reference
Unkn	own			
17.08.1819	Crown land	William Cox	Unknown	Vol 14726 Fol 222
Unknown	Unknown	Unknown	Unknown	Unknown
Vol 1	4726 Folio 222			I
28.07.1983	Unknown	Leased to : Pioneer Concrete (N.S.W) Pty Ltd	T646462	Vol 14726 Fol 222
Vol 1	3544 Fol 125			
17.08.1819	Crown land	William Cox	Unknown	Vol 13544 Fol 125
06.02.1978	Unknown	Leased to : Ray Fitzpatrick Quarries Pty Ltd	13544125	Vol 13544 Fol 125
Lot 2	Deposited Plan 262213	·		
06.08.1987	Unknown	Report created	Unknown	Lot 2 DP 262213
23/12/1996	Variation of lease.	Unknown	2716424	Lot 2 DP 262213
12/9/2005	Transefer of lease	Unknown	20343	Lot 2 DP 262213
25/5/2006	DEPOSITED PLAN	Unknown	DP1097123	Lot 2 DP 262213
14/6/2006	Lease		AC54545	Lot 2 DP 262213
12/08/2008	Withdrawn – Deposited Plan		DP1127167	Lot 2 DP 262213
Lot 2	Deposited Plan 1145808			
18/12/2009	Deposited Plan		DP1145808	Lot 2 DP 1145808
12/08/2008	Withdrawn – Deposited Plan			

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

Table 7. Continued				
Date	Transferred/Leased From	Transferred/Leased To	Transfer No.	Certificate reference
Lot 3 Deposited Plan 1145808				
18/12/2009	Deposited Plan		DP1145808	Lot 3 DP 1145808

The information obtained from the LTO, LPI and Council Records indicates that the site has been in use as grazing land with a quarry and asphalt plant adjacent the site for greater than 40 years.

3.2 Aerial Photographs Review

A review of aerial photographs was conducted and is summarised in **Table 8** below. Aerial photographs from the years of 1930, 1951, 1961, 1972, 1982, 1991, 2000 and 2013 were examined (refer to **Appendix III - Aerial Photographs**).

Year	Туре	Subject Site Description	Adjacent Site Description
1955	Black and White	The site is cleared pasture land, some areas of woodland are present. The watercourse running from east to west through the site is present. The quarry to the north is present with a surrounding foot print of disturbed land. Minimal roads associated with the site can be observed. A track along the south-western boundary is present and small site sheds and buildings can be located.	A quarry is present to the north of the site, a farm dam occurs to the south-west and grazing lands surround the site. Some clearing and ground disturbance is evident to the north of the quarry.
1978	Black and White	The site appears to have been cleared with the majority of the vegetation previously present removed. A road surrounds the northern and western boundary of the site. A power line easement can now be seen overhead the south-western boundary. Plant equipment, storage facilities, numerous small buildings and storage tanks are present within the quarry / asphalt plant directly to the east.	The quarry to the north of the site has deepened and expanded in all directions. A number of roads now lead to the quarry. An asphalt plant is present immediately adjacent the eastern boundary. A waste water dam is present associated with the asphalt plant is located adjacent the south- eastern corner of the site. There is significant evidence of land disturbance within the surrounding areas. The M4 is now present to the north of the quarry and there are areas of urban development to the north-west. The farm dam and grazing lands to the south and south-west appear unchanged from the previous photo.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Table 8. Continued...

Year	Туре	Subject Site Description	Adjacent Site Description
1994	Colour	The site remains predominantly unchanged from the previous photo. The site appears to be remain for grazing purposes. Some evidence of dirt tracks can be seen. The creekline and small pocket of vegetation in the south- west corner appear unchanged.	Urban development is now present to the north and west of the site with large scale development of Erskine Park and Minchinbury. The depth of the Quarry appears deeper than the previous photo. An area to the west of the quarry has now been cleared. The asphalt plant to the east of the site appears largely unchanged from the previous photo. Archibold Road to the west of the site is now present.

The site and adjacent areas appeared at the time of inspection as it appears in the 2013 aerial photograph.

3.3 Contaminated Land Register Search

A search of the sites listed by the EPA under the Contaminated Land Management Act 1997 revealed that no records have been issued against the site.

3.4 Section 149

The site is currently zoned under Zone E2 - Environmental Conservation and IN1 - General Industrial under the provisions of State Environmental Planning Policy (Western Sydney Employment Area) 2009. The Planning Certificate under Section 149 of the *Environmental Planning and Assessment Act 1979* (See **Appendix V – Section 149 Certificate**) provides the state and local environmental planning instruments which affect the site.

The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in the planning certificate.

- The land is not within an investigation area or remediation site under Part 3 of the Contaminated Land Management Act 1997;
- The land is not subject to an investigation order or an remediation order within the meaning of the Contaminated Land Management Act 1997;
- The land is not subject to a voluntary investigation proposal (or voluntary remediation proposal) that is the subject of the Environmental Protection Authority's agreement under Section 19 or 26 of the Contaminated Land Management Act 1997; and
- The land is not subject to a site audit statement within the meaning of the Contaminated Land Management Act 1997.

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: www.ADenvirotech.com.au e-mail: info@ADenvirotech.com.au

3.5 WorkCover NSW

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover NSW has located records pertaining to the above mentioned premises (Refer to Appendix IX – WorkCover Contaminated Goods Search). A licence to keep dangerous goods on site under three separate business names, Pioneer Construction Materials Pty Ltd, Pioneer Concrete (NSW) Pty Ltd and Ray Fitzpatrick Quarries Pty Ltd were returned. These licences were issued between 1957 and 2001. There appears to have been two (2) 15 000 L underground petroleum storage tanks located approximate 450 m north-east of the site. The dangerous goods licence application from 1999 indicates that the tanks have been removed. A visual inspection of the former location of the tanks revealed the presence of a confined space within the approximate area. Discussions with the client confirm that this is not an underground petroleum storage tank.

Given the distance from the proposed site, it is considered unlikely that there is potential contamination as a result of the former underground petroleum storage tanks located off site approximately 450 m north-east.

3.6 ADE Report: 7438 Honeycomb Drive, Eastern Creek NSW.PSI v1 final

A review of information relating to current and previous land uses was undertaken by ADE in report #7438 Honeycomb Drive, Eastern Creek NSW (2014). The Phase I report identified potential contamination types and contamination sources associated with activities reported to have occurred on and around the site. The report consisted of a desktop study and site inspection. The primary objective of the report was to identify past and present potentially contaminating activities, identify potential contamination types, discuss the site condition, provide an assessment of site contamination and assess the need for further investigations.

The findings of the Phase I Preliminary Site Investigation are as follows:

- The site has been utilised as grazing land as far back as records indicate.
- ADE has been advised that the site will be developed into an electricity generating facility.
- An asphalt plant and associated waste water overflow dam has been present adjacent the site since at least 1978.
- A quarry to the north of the site has been in operation since at least 1955.
- It is the opinion of ADE that due to the proximity of the asphalt plant, the potential overflow from adjacent waste water dam, the potential for contaminated fill and the potential for the deposition of airborne dust, there is the potential for contamination to be present on site.
- The potential contamination types that were identified for the site include: Asbestos Containing Materials, Heavy metals, BTEX, PAHs, TRHs, OCPs, OPPs, PCBs and Phenols.
- A Targeted Phase II Detailed Site Contamination Investigation around the boundary of the asphalt plant should be undertaken to determine whether contamination is present within the soil, and or surface water and river sediment within the boundaries of the site.

Should the Targeted Phase II DSI reveal the site is not contaminated, the site can be deemed suitable for the proposed development

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

4 DATA QUALITY OBJECTIVES

The targeted Phase II Detailed Site Contamination Investigation works were designed using a Data Quality Objectives (DQO) as defined by the US EPA and the NSW EPA in the "Guidelines for the NSW DEC Site Auditor Scheme" (2nd Edition), (NSW DEC, April 2006) and AS 4482.1(2005). The DQO process consists of a seven step planning approach to facilitate the development of qualitative and quantitative statements that specify the quality of the data required to support decision making within the scope of the investigation. This process utilises systematic planning and statistical hypothesis testing to differentiate between two or more clearly defined alternatives.

4.1 Statement of Problem

Objective:	Provide advice on the nature and extent of contamination (if any) at the site and determine the potential risk posed to human health and the environment.	
Contamination	Potential contamination at the site is associated with the historical use of the	
Issue:	site, the adjacent ashphalt plant, and other potentially contaminating activities.	
Project Team:	TNG Project Manager: Ian Malouf	
	ADE Managing Director: Ross Nefodov	
	ADE Project Manager: Thomas Lobsey	
	ADE Environmental Scientist/Engineer: Dylan Jones and Paige Edmunds	
Conceptual Model	The Site Conceptual Contamination Model is included in Section 5 of this	
	report.	
Resources & Project	The ADE project team is listed above. The fieldworks and reporting	
Timeframes	components of the Phase II Detailed Site Investigation were completed in	
	May/June 2014.	
Community	The key community groups include:	
Concerns	Employees and commuters in adjacent areas;	
	 TNG employees and subcontractors; 	
	Local businesses and services	
Regulatory	NSW EPA, Blacktown City Council	
Authorities & Local		
Government		

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

 Internet:

 site:
 www.ADenvirotech.com.au

 e-mail:
 info@ADenvirotech.com.au

ABN: 520 934 529 50

Page 24 of 75

4.2 Identification of Decision

Principle Study Question	 Are contaminant concentrations of the contaminants of concern (COI (identified in Section 5 of this report) on the site in excess of the NSW EPA -endorsed acceptance criteria? NEPM (2013) "Schedule B(1) Guideline on the Investigation Levels for So and Groundwater" 	
	• NSW EPA Guidelines for Consultants Reporting on Contaminated Sites (2000);	
	NSW EPA Sampling Design Guidelines (1995); and	
	 NSW EPA Waste Classifications Guidelines Part 1: Classifying Waste (2009). 	
Action Resolutions	Two alternative actions could result from the resolution of the principle study question:	
	• If the concentrations of any contaminant on the site exceeds the acceptance criteria, the action may be to remove/remediate the contaminated soil or conduct further investigations; and	
	• If the concentrations of any contaminants on the site do not exceed the acceptance criteria, no action will be taken.	
Decision Statement	Define whether or not the average concentrations of the COC (identified in Section 5 of this report) on the site exceed the acceptance criteria and require remediation.	
	It is assumed that the site would be suitable for the proposed use if the soil contaminant concentrations meet the adopted guideline values.	

4.3 Identification of Inputs to Decision

The main parameter inputs that were required to resolve the decision statement for the investigation were identified to be:

Soil Condition	• Use of field investigation techniques to identify previously undocumented areas of contamination within the site (i.e. bore holing);	
	• Visual inspection of soil conditions and indicators of soil contamination (i.e. vegetation); and	
	 Collection and analysis of representative soil samples from borehole locations. 	
Aesthetic Condition	Aesthetic impacts within soil and water resulting from the concentrations of contaminants (i.e. odour, discolouration, stained materials, NAPL, LNAPL).	
Contaminant	Identification of contaminant types and sources, distribution within the site	
Extent	and the surrounding areas (if applicable).	
Toxicity	The toxicity of the contaminants of concern and their respective	

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610
 Internet:

 site:
 www.ADenvirotech.com.au

 e-mail:
 info@ADenvirotech.com.au

Toxicity	environmental persistence.	
(continued)		
Receptors	Identification of potential receptors (both on and off site).	
Exposure Pathways	The assessment of exposure pathways including conceptual fate and transport	
	modeling of potential contaminants.	
Site Criteria	NSW EPA -endorsed acceptance criteria as outlined in Section 7.	

4.4 Definition of Study Boundaries

A detailed description of the spatial and temporal boundaries of the problem, characteristics that define the population of interest and any practical considerations for the study:

Geographical Limit	The spatial boundary of the site is indicated in Figure 1 and Figure 2.	
Investigation Limit	• The limit of the investigation extent was defined by the number of sampling locations (25).	
	• The target investigation depth for contaminant soil samples was a maximum of 0.5 m BGL.	
	 Soil, sediment and water sampling/testing was undertaken as outlined in the scope of work. 	
Constraints	Time; and	
	Costs.	
Receptors of Concern	The potential receptors of concern are outlined in Section 5 of this report.	

4.5 Development of Decision Rule

Definition of the statistical parameters, relative action levels and specification of the acceptance criteria for QA/QC validation results:

Statistical	ADE concluded that a 95% Upper Confidence Limit (UCL) of the arithmetic
Parameters	average concentrations of contaminants would be the most appropriate
	statistical parameter.
Relative Action	The relative action levels for the decision were the NEPM (2013) "Schedule
Levels	B(1) Guideline on the Investigation Levels for Soil and Groundwater".
	If the maximum concentrations of the analytes tested are above their acceptance criteria, then the soil will be considered contaminated warranting further investigations and/or management and may be recommended to be disposed of at an EPA approved landfill. Alternatively if the 95% UCL of the arithmetic average concentrations of the analytes tested are below their acceptance criteria, then no action will be taken.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

Acceptance Criteria for QA/QC	The assigned criteria for QA/QC samples to ensure the validity of results is outlined below:	
	Laboratory duplicate samples	95%
	Laboratory blank samples	100%
	Laboratory spike/surrogate recoveries	95%
	Laboratory control (split) samples	75%
	Blind replicate samples	75%
	Rinsate samples	75%
	Trip blank samples	95%
	Spike BTEX samples	75%
	Subsequent to an overall completeness of 95%, the data collected through the course of the investigation will then be considered valid and acceptable.	

4.6 Specification of Tolerable Limits on Decision Errors

Defines how the quality of the data collected by the Phase II Detailed Site Investigation is to be assessed. These criteria are summarised below:

Documentation &	Site conditions properly described.
Data Completeness	Sampling locations properly described and located.
	 Completion of field records, chain of custody documentation, laboratory test certificates from NATA-registered laboratories.
	 Samples are collected from all areas of potential environmental concern within the subject site.
	• Samples are tested for a selection of potential contaminants of concern.
	• A minimum of 95% completeness for the overall site investigation.
Data Comparability	• Use of appropriate techniques for the sampling, storage and transportation of samples.
	Implementation of NATA certified laboratory using NEPM procedures.
	Use of NATA certified check laboratory.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

Data	Collection of representative samples from each sampling location.		
Representativeness	Collection of representative samples from across the site.		
	 Use of appropriate techniques for sampling, storage and transportation of samples 		
	Use of appropriately trained and qualified field personnel.		
Precision for Sampling and Analysis	 Use of appropriate laboratory quality analysis assessment (i.e. blind replicates, split samples). 		
	 Relative Percent Difference's (RPD's) to be less than 30% for inorganic and 50% for organic analytes. 		
	Acceptable outputs of trip blank and spike samples.		
	Acceptable quality of rinsate sample results.		
Accuracy for	Satisfy laboratory QC criteria of 95%.		
Sampling and Analysis	• Trip blanks and rinsate sample results returned with no contamination.		
	 All laboratory duplicate samples within acceptable ranges. 		
	 All control results within acceptable ranges. 		
Types of Decision Errors	The planning team determined that the two decision errors were: i) deciding that material on site is contaminated when it truly is not, and ii) deciding that material on site is not contaminated when it truly is.		
	The true state of nature for decision error (i) is that soil is not contaminated. The true state of nature for decision error (ii) is that soil is contaminated.		

4.7 Data Collection Design

The organisation of the data collection and analysis design, for optimising the generation of data to satisfy the DQOs and the objective of the investigation has been achieved via the following:

Pre-approved Work Plan	The sampling, analysis and quality plan for the investigation at the site has been developed to assess the concentrations of contaminants present at the site through the implementation of the components outlined within AS 4482.1 (2005) and AS/NZS 5667.1 (1998).
Compliance with EPA Guidelines	• Use of appropriate techniques for the sampling, storage and transportation of samples.
	Use of NATA certified laboratory using NEPM procedures.
	Use of NATA certified check laboratory.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

5 SITE INVESTIGATION DESIGN AND METHODOLOGY

The following outlines the fieldwork and laboratory testing undertaken for this targeted DSI. It will also identify the potential contamination types and receptors for the site.

5.1 Investigation Design

The objectives of the investigation were to:

- Provide comprehensive information on the issues raised in the Phase I Preliminary Investigation;
- Discuss the site condition;
- Assess and describe the source, type, extent and level of contamination (if present);
- Determine the human health and environmental risk (if present);
- Provide a preliminary waste classification in accordance with the adopted NSW EPA *Waste Classification* Guidelines; and
- Provide an assessment of site contamination.

5.2 Potential Contamination Types

The following potential types of contaminants for the site investigated in this DSI are summarised below in **Table 9**. These are based on the key features of the site. It should be noted that this list is not exhaustive in that it does not take into account all past historical uses of adjacent properties.

Contamination Source	Location	Potential Contaminants
Fill Materials	Targeted to areas with soil profile not consistent with local geology	Asbestos Containing Materials, Heavy metals, PAHs, TRH, BTEX, OCPs, OPPs, PCBs, Phenols
Deposition of airborne dust	Entire site	Heavy metals, PAHs, TRH
Potential runoff and water from asphalt plant and adjacent dams	Border of site and asphalt plant	Metals, TRH, PAHs

Table 9. Sources and Types of Contaminants that may be present on site.

5.3 Primary Transport Mechanisms

Primary transport mechanisms for the migration of potential contaminants on to the site or off the site include:

5.3.1 Drainage to (i) the immediate area

Overall the water flowing onto site would be expected to run in a southerly direction into the onsite creek which then runs off site in a westerly direction, eventually flows towards Ropes Creek. Ropes Creek flows in a northerly directions and enters South Creek, which also flows in a northerly direction and eventually enters the Hawkesbury.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Surface water running off the site is expected to flow down gradient in a southerly direction towards the onsite creek and flow in a westerly direction towards Ropes Creek.

5.3.2 Atmospheric transportation and deposition

Disturbance of potentially contaminating materials located adjacent and within the site may produce dust, containing elevated levels of contaminants. Pollutants may be emitted from a combination of point, mobile, or an area, from both local and distant sources. Contaminants (if present), may be deposited onto the site from adjacent areas/processes, including the asphalt plant, the M7 and M5 motorway and nearby landfill.

5.3.3 Downward migration and leaching via infiltration of rain water into the soil

Contaminants from the surrounding areas and adjacent road network may leach into the soil, and subsequently groundwater, via infiltration of rain water through surface soils.

5.3.4 Lateral migration via Groundwater

Contaminants from previous land use activities may have the capacity to migrate down gradient from the site via ground water. There is also the potential for the migration of contaminants onto the site in the groundwater from adjacent areas.

5.4 Potential Contamination Receptors

The main potential contamination receptors were considered to include:

- site visitors, contractors, and adjacent property owners/users, who may come into contact with contaminated soil or dust;
- groundwater; and
- downstream tributaries.

5.5 Site Conceptual Contamination Model

Table 10 below shows the potential contamination sources, their pathways and receptors.

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

able 10. Site Conceptual Contamination Model.

Contamination Pathway Receptor		Receptor
Source		
Fill Materials	Dust inhalation	Adjacent land users
		Users of the site
		Downstream tributaries
	Dermal	Users of the site
	contact/ingestion	Ecological communities
	Downward	 Soil and groundwater
	migration into	Vegetation
	soil	 Ecological Communities
		Downstream tributaries
Deposition of	Dust inhalation	Adjacent land users
airborne dust		Users of the site
		Ecological communities
	Dermal	Adjacent land users
	contact/ingestion	Users of the site
		Ecological communities
	Downward	 Soil and groundwater
	migration into	Vegetation
	the soil	 Ecological Communities
		Downstream tributaries
Potential runoff and	Dust inhalation	 Adjacent land users
water from asphalt		Users of the site
plant and adjacent		Ecological communities
dams	Downward	 Soil and groundwater
	migration into	 Ecological communities
	soil	Downstream tributaries
	Runoff / drainage	 Soil and groundwater
		Downstream tributaries
	Dermal	Adjacent land users
	contact/ingestion	Users of the site
		Ecological communities

5.6 Field Investigation Procedures

The Field Investigation Procedures were developed in accordance with ADE Report 7773 Preliminary Site Investigation; Honeycomb Drive, Eastern Creek NSW (dated 2014).

A total number of twenty nine (29) discrete soil, sediment and water samples were collected from twenty one (25) sample points throughout the site (excluding QA/QC samples).

Refer to Figure 2 for representative sample locations.

Field activities were supervised by experienced environmental scientists who directed sampling operations. Onsite investigations were conducted in relation to the scope outlined and subsequent correspondence with the client.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

5.6.1 Pre-work Procedure

A services and utilities assessment was conducted by ADE. Utilities and services data was obtained from the following owners:

- Endeavour Energy
- Jemena
- SydneyWater

Before work commenced a specialised Safety, Health & Environment Work Method Statement (SH&EWMS) was developed specifically for the project.

5.6.2 Sampling Procedures

Sampling techniques were determined following assessment of access, location of underground utilities and/or health and safety requirements. The contamination assessment of the subsurface, sediment and surface water at the site was achieved by an investigation consisting of an exploratory drilling program and sediment and surface water sampling from the creek within the site.

5.6.3 Exploratory Soil Testing Program

The site investigation was designed based on a judgmental/grid sampling design with sampling locations chosen in areas where contamination is likely to occur. Background data and a site inspection identified any activities that may have generated contamination.

Decontamination:

ADE's standard decontamination procedures were undertaken beforehand drilling each of the boreholes and collecting the soil and water samples to avoid the possibility of cross-contamination.

The soil and water sampling equipment and items likely to come into contact with soil samples were thoroughly washed, followed by rinsing with phosphate-free detergent and deionised water before the collection of samples. Due care was taken with the disposal of any washings and residues from such cleaning operations.

Documentation:

A field observation log was kept by sampling personnel. Details recorded in the log included:

- Borehole and sample number;
- Soil profile notes;
- Sampling method;
- Sample identification;
- Sample description; and
- Sample point measurements.

A comprehensive master sample register was maintained. As samples were received, they were given a unique sequential number from the sample register into which details from the labels were entered.

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Before packing and dispatch of samples for analysis, a Chain of Custody form was completed. This form recorded details of the individual samples being dispatched and the type of analysis required for each sample.

Sample Management:

Soil and sediment samples were collected using fresh gloves and placed in sterile glass jars with Teflon lined lids and then placed into a pre-cooled Esky. Additional samples for determination of the possible vertical extent of impact were also obtained.

Each sample jar was well protected by packaging material. Ice packs were inserted in the Esky to maintain the samples at approximately 4⁰C. The original Chain of Custody form was enclosed in the Esky that was then sealed and dispatched to NATA accredited analytical laboratories.

Using the methods as outlined below, stratigraphical information was obtained along with the samples in order to assess the shallow geological and hydrogeological conditions at the site in accordance with AS 1726-1993 'Australian Standard Geotechnical Site Investigations' (Refer to Appendix VIII - Borehole Logs).

Water samples for analysis of TRH and PAH were collected in 1 L glass jars. Water samples for analysis of filtered metals were stored in 500 mL plastic bottles with a nitric acid preservative. Each sample was well protected by packaging material. Ice packs were inserted in a cooler box to maintain the samples at approximately 4^oC. The original Chain of Custody form was enclosed in the Esky that was then sealed and dispatched to NATA accredited analytical laboratories.

The methodology for collection of samples included the following:

a) Borehole Drilling Procedure

This method was utilised throughout the site. Soils were collected by drilling boreholes using a Tanaka Hand Drill. Samples were collected from 0.0-0.2 m BGL with a visual assessment to 0.5 m BGL. A PID reader was used as to screen soil samples for BTEX (Refer to Appendix XI – Calibration Certificates).

b) Surface sampling

Asbestos samples were collected by hand and/or with a decontaminated steel trowel as per the predetermined sample locations. Samples were then placed in bags and submitted to ADE's NATA Accredited Lab for analytical testing.

c) Grab sampling

Grab sampling methodology was used to collect sediment samples. Samples were placed in glass UV resistant jars with teflon lined lids and stored in a chilled cooler box at approximately 4^oC prior to submission to a NATA Accredited Lab.

d) Surface Water Sampling

Surface water samples were collected by semi-emerging a 1L UV resistant glass bottle into the creek water and allowing it to gradually fill. Samples for analysis of distilled metals were field filtered using a 45 micron filter and preserved with nitric acid.

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

5.6.4. Laboratory Analysis

All samples collected were submitted to Eurofins I MGT and ADE's in house Environmental and OH&S Laboratory for testing, two NATA Accredited laboratories for the analytical techniques required by this DSI.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page 34 of 75

6 SAMPLING AND ANALYTICAL PROGRAM

Samples were analysed according to a suite of contaminants relevant to the sample type and location. Based on recommendations in ADE Report 7407 Preliminary Site Investigation, Honeycomb Drive, Eastern Creek NSW (dated 2014) and in correspondence with TNG, the following sampling and analytical program was formulated for the DSI.

- Boreholes were excavated to a maximum depth of 0.5 m below ground level (BGL).
- Surface samples were collected based on a judgmental pattern throughout the site.

A total of forty eight (48) samples (including blind replicates, trip blank, trip spike, rinsate, split replicates and asbestos samples) were submitted to both Eurofins I MGT and ADE's in house Environmental and OH&S Laboratory for testing. All copies of the completed Chain of Custody forms were retained on the Central Filing System and the originals were sent to the analytical laboratories together with the samples.

The selected samples were tested for a range of analytes including:

- Metals Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn);
- Total Recoverable Hydrocarbons (TRH);
- Polyaromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Organophosphorous Pesticides (OPPs);
- PCBs;
- Phenols; and
- Asbestos.

The sampling and analytical program is outlined below in Table 11.

Refer to **Appendix VII – Analytical Reports** for the analytical methods used by Eurofins I MGT and Environmental OH&S Laboratory (a subsidiary of ADE).

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610
 Internet:

 site:
 www.ADenvirotech.com.au

 e-mail:
 info@ADenvirotech.com.au

				-	
Date	Sample ID	Location (refer to figure 2 for sample locations)	Depth (m)	Sample Type	Analysis
25.06.14	7773-BH-01A	BH-01	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-02A	BH-02	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-03A	BH-03	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-04A	BH-04	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-05A	BH-05	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-06A	BH-06	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-07A	BH-07	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-08A	BH-08	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-09A	BH-09	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-10A	BH-10	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-10A	BH-11	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-10A	BH-12	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-10A	BH-13	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-10A	BH-14	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-10A	BH-15	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BH-10A	BH-16	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-SP1-	SP1-01	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, PCBs,
	01A				Phenols, BTEX (PID)
25.06.14	7773-ASB1	SP1-01	0.0-0.2	Soil	Asbestos
25.06.14	7773-SP1-	SP1-02	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, PCBs,
	02A				Phenols, BTEX (PID)
25.06.14	7773-ASB2	SP1-02	0.0-0.2	Soil	Asbestos
25.06.14	7773-SP1-	SP1-03	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, PCBs,
	03A				Phenols, BTEX (PID)
25.06.14	7773-ASB3	SP1-03	0.0-0.2	Soil	Asbestos
25.06.14	7773-SP2-	SP2-01	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, PCBs,
	01A				Phenols, BTEX (PID)
25.06.14	7773-ASB4	SP2-01	0.0-0.2	Soil	Asbestos
25.06.14	7773-SP2-	SP2-02	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, PCBs,
25.06.4.4	02A	653.03			Phenols, BTEX (PID)
25.06.14	7773-ASB5	SP2-02	0.0-0.2	Soil	Asbestos
25.06.14	7773-SS-01	SS-01	0.0-0.2	Sediment	Metals, TRH, PAH
25.06.14	7773-SS-02	SS-02	0.0-0.2	Sediment	Metals, TRH, PAH
25.06.14	7773-SS-03	SS-03	0.0-0.2	Sediment	Metals, TRH, PAH
25.06.14	7773-SS-04	SS-04	0.0-0.2	Sediment	Metals, TRH, PAH
25.06.14	7773-BR1	BH-08	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-BR2	BH-16	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-SP1	BH-16	0.0-0.2	Soil	Metals, TRH, PAH, OCPs, OPPs, BTEX (PID)
25.06.14	7773-SW-01	SW-01	Surface	Water	Metals, TRH, PAH
25.06.14	7773-SW-02	SW-02	Surface	Water	Metals, TRH, PAH
25.06.14	7773-SW-03	SW-03	Surface	Water	Metals, TRH, PAH
25.06.14	7773-SW-04	SW-04	Surface	Water	Metals, TRH, PAH

Table 11. Sampling and Analytical Program for Site Investigation

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Table 11. Continued...

Date	Sample ID	Location (refer to figure 2 for sample locations)	Depth (m)	Sample Type	Analysis
25.06.14	7773-SW-BR1	SW-04	Surface	Water	Metals, TRH, PAH
25.06.14	7773-Rinsate1	-	-	Water	Metals, TRH, PAH
25.06.14	7773-VOC1-			40ml vial	BTEX
	Spike	-	-		
25.06.14	7773-VOC1-			40ml vial	BTEX
	Blank	-	-		
25.06.14	7773-VOC2-	_		40ml vial	BTEX
	Spike	-	-		
25.06.14	7773-VOC2-			40ml vial	BTEX
	Blank	-	-		
21.07.14	7773-SW01-A	SW-03	Surface	Water	CaCO ₃
21.07.14	7773-SW01-B	SW-03	Surface	Water	CaCO ₃
21.07.14	7773-SW02-A	SW-04	Surface	Water	CaCO ₃
21.07.14	7773-SW02-B	SW-04	Surface	Water	CaCO ₃

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610
 Internet:

 site:
 www.ADenvirotech.com.au

 e-mail:
 info@ADenvirotech.com.au

ABN: 520 934 529 50

Page **37** of **75**

7 ASSESSMENT CRITERIA

7.1 Soil Assessment Criteria

The criteria specified in the following publications were used for the site assessment:

- *Guidelines for the NSW Site Auditor Scheme*, NSW DEC 2006, 2nd Edition;
- Assessment of Site Contamination, National Environment Protection (Assessment of Site Contamination) Measure, 2013;
- Identification and investigation of acid sulfate soils and acidic landscapes WA DEC 2013; and
- ANZECC Water Quality Guidelines, October 2000.

The report applies the relevant Investigation Levels to identify contaminants and/or areas of contamination that potentially pose a risk to human or environmental health.

The NEPM (2013) guidelines criteria for Health Based Investigation Levels (HILs) for soils are based on the current and/or proposed land use for the site.

The NEPM (2013) guidelines stipulate HILs for four land use types:

- A 'Standard' residential with garden/accessible soil (home-grown produce contributing less than 10% of vegetable and fruit and fruit intake, no poultry): this category includes children's day-care centres, kindergartens, preschools and primary schools.
- B Residential with minimal opportunities for soil access: includes dwellings with fully and permanently paved yard space such as high rise apartments and flats.
- C Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped open space where the potential for exposure is lower and where site-specific assessment may be more appropriate.

D Commercial/industrial: includes premises such as shops and offices as well as factories and industrial sites.

The NEPM (2013) Ecological Screening Level (Commercial and Industrial) threshold concentrations have been adopted in relation to the assessment of petroleum hydrocarbons (TRH/BTEX). Ecological Investigation Level (Commercial and Industrial) threshold concentrations have also been adopted in relation to the assessment of Naphthalene.

The ANZECC (2000) sediment guidelines and NEPM (2013) Ecological Screening Level (Commercial and Industrial) threshold concentrations have been adopted for sediment samples in relation to heavy metals and PAH using the ISQG-Low and ISQG-High trigger values. For site assessment criteria values refer to **Table 12** and **Table 13**.

The ANZECC (2000) Guidelines for Fresh and Marine Water Quality have been adopted with a 95% species protection trigger value threshold for freshwater in relation to heavy metals (filtered), TRH and PAH. For site assessment criteria values refer to **Table 14.** Adjusted trigger values for specific metals (Cadmium, Copper, Chromium, Lead, Nickel and Zinc) were adopted after taking into consideration of the hardness of the water. All of the water samples contained concentrations of CaCO₃ above 400 mg/L, categorising them as 'Extremely Hard'.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

A contaminant concentration in soil will be deemed acceptable if:

- All samples meet the specified acceptance criteria; or
- The 95 % upper confidence limit (UCL) average concentration of each contaminant is below the acceptance criteria; and
- No individual exceedance is greater than 2.5 times the acceptance criteria.

If a location is found to have more than 2.5 times a contaminant's acceptable limit, then it will be classified as a "hot-spot", requiring further assessment, remediation, removal or management.

If the calculated 95% UCL of the arithmetic average concentration of the contaminant is above their acceptance criteria, then the soil will be considered contaminated, requiring further assessment, remediation, removal or management.

If the 95 % UCL of the arithmetic average concentrations is below the acceptance criteria, and no concentrations are at a "hotspot" level (not two and a half times the health based investigation level criteria), slight elevations above the acceptance criteria may be considered to pose an insignificant human health risk since most of the site will be covered by concrete and road-base.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

		Ecological Screening ^{2,5} /			
Substances	Residential A	Residential B	Residential C	Commercial / Industrial D	Investigation Levels ^{2,5} (ESLs / EILs)
METALS/METALLOIDS		_	- <u>I</u>		
Arsenic (total)	100	500	300	3000	160 ⁴
Barium					
Beryllium	60	90	90	500	
Cadmium	20	150	90	900	
Chromium (VI)					
Chromium (Total)*7	100	500	300	3600	
Cobalt	100	600	300	4000	
Copper	6000	30000	17000	240000	
Lead	300	1200	600	1500	
Manganese	3800	14000	19000	60000	
Methyl mercury	10	30	13	180	
Mercury (inorganic)	40	120	80	730	
Nickel	400	1200	1200	6000	
Vanadium					
Zinc	7400	60000	30000	400000	
Aldrin + Dieldrin	6	10	10	45	
Chlordane	50	90	70	530	
DDT + DDD + DDE	240	600	400	3600	
DDT	-	-	-	_	640
Heptachlor	6	10	10	50	
Polycyclic aromatic hydrocarbons (PAHs)	300	400	300	4000	
Benzo(a)pyrene					1.4
Carcinogenic PAHs (as BaP TEQ) ²	3	4	3	40	
Phenols	3000	45000	40000	240000	
Pentachlorophenal	100	130	120	660	
Cresols	400	4700	4000	25 000	
PCBs (Total)	1	1	1	7	
PETROLEUM HYDROCARE		· ·			
Benzene					75
Toluene					135
Ethyl Benzene		1	1		165
Xylene	1				95
Naphthalene					370
Carcinogenic PAHs (as	3	4	3	40	-
BaP TEQ) ³	-		-	-	
TPH: C ₆ – C ₁₀					215
TPH: C ₁₀ -C ₁₆					170
TPH: C ₁₆ - C ₃₄					1700
TPH: C ₃₄ – C ₄₀					3300

Human exposure settings based on land use have been established for HILs (see Taylor and Langley 1998). These are:

A. 'Standard' residential with garden/accessible soil (home-grown produce contributing less than 10% of vegetable and fruit intake; no poultry): this category includes children's day-care centres, kindergartens, preschools and primary schools.

B. Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

C. Public open space such as parks, playgrounds, playing fields (e.g. ovals) secondary schools and footpaths. This does not include undeveloped public open space where potential for exposure is lower and where a site-specific assessment may be more appropriate.

D. Commercial/Industrial: includes premises such as shops and offices as well as factories and industrial sites. (For details on derivation of HILs for human exposure settings based on land use see <u>Schedule B(7A)</u>.

Values provided are for commercial / industrial land use.

³ Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF.

⁴ The arsenic is considered aged. Aged values are applicable to arsenic contamination present in soil for at least two years.

Ecological Screening Level for Commercial / Industrial land use

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

 Table 13. Site Assessment Criteria for sediment contamination.

	Site Assessment Criteria (SAC)						
Analytes	ANZECC Interim Sediment Quality Guidelines- Low ¹ (Trigger value)	ANZECC Interim Sediment Quality Guidelines- High ¹	Ecological Screening ⁴ / Investigation Levels ⁴ / (EILs / ESLs)				
	(mg/kg)	(mg/kg)	(mg/kg)				
Arsenic	20	70	-				
Cadmium	1.5	10.0	-				
Chromium	80	370	-				
Copper	65	270	-				
Lead	50	220	-				
Mercury	0.15	1.0	-				
Nickel	21	52	-				
Zinc	200	410	-				
TRH $C_6 - C_{10}$	-	-	215				
TRH C ₁₀ - C ₄₀	-	-	NA				
TRH C ₁₀ -C ₁₆	-	-	170 ³				
TRH C ₁₆ -C ₃₄	-	-	1700 ³				
TRH C ₃₄ -C ₄₀	-	-	3300 ³				
Naphthalene	160	2100	-				
Benzo(a)pyrene	430	1600	-				
B(a)P TEQ ²	-	-	-				
Total PAH	4000	45000	-				

Notes to table

ND - Not detected/below Practical Quantitation Limit (PQL)

NA – Not Applicable

¹ANZECC Guidelines for Water Quality, 2000

²Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF.

³Coarse soil texture was adopted

⁴ Values provided for commercial/industrial land use.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **41** of **75**

 Table 14. Site Assessment Criteria for surface water contamination.

	Site Assessment Criteria (SAC)
Analytes	Adjusted ANZECC (2000) Guidelines for Fresh Water Quality ² 95% Species Protection (µg/L)
Arsenic	13 ^f
Cadmium	2 ⁵
Chromium	8.4 ^{5e}
Copper	12.65
Lead	90.8 ⁵
Mercury	0.06 ^b
Nickel	99 ⁵
Zinc	72 ^{5d}
TRH >C6 – C10	150 ³
TRH >C10 - C16	
TRH >C16 – C34	600 ⁴
TRH >C34 – C40	
Naphthalene	16
Anthracene	0.01 ^{a,b}
Phenanthrene	0.6 ^{a,b}
Fluoranthene	1.0 ^{a,b}
Benzo(a)pyrene	0.1 ^{a,b}

Notes to Table:

1 - Circular on Target Values and Intervention Values for soil remediation, Ministry of Housing, Spatial Planning and Environment, 2000 (Netherlands).

2 -Trigger values adopted (level of protection: 95% of species for slightly-moderately disturbed systems), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000.

a. In the absence of a high reliability concentration, the moderate or low reliability guideline concentration has been adopted.

b. Due to the potential for the chemical to bioaccumulate, a 99% percent protection level has been adopted.

c. As the two isomers m-Xylene and p-Xylene cannot be distinguished analytically, the lower threshold of 75 µg/l has been adopted.

d. Figure may not protect key species from chronic toxicity, ANZECC 2000.

e. As total concentration was reported for the analyte, the most stringent valence threshold was adopted.

f. As total Arsenic is provided in analytical results, the most stringent criteria of As III and As V has been adopted.

g. 99% protection recommended for 'slightly-moderately' disturbed systems.

3 - No current NSW DECCW adopted criteria. Recommended applicable criteria for screening purposes.

4 - Maximum of 600 µg/l for sum of TRH>C10-C40 (adapted from Netherlands Intervention Values¹).

5 - Adjusted trigger value for 'Extremely Hard' water (>400 mg/L CaCo₃)

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

8 **RESULTS and DISCUSSION**

8.1 Field Observations

The following observations with regard to contamination on the site were recorded:

- Vegetation appeared healthy with minimal signs of stress or discolouration at the time of inspection;
- An area of presumed fill materials was observed which contained plastic rubbish;
- Surface water appeared to be turbid, ordourless and free of non-aqueous phase liquids (NAPL); and
- The site was inspected thoroughly, however due to the presence of vegetation across a large proportion of the site; visual inspection was prohibited in many areas. During the construction/development phase of the site, if unexpected finds, such as physical contamination (building debris, asbestos ect) are encountered, further investigation works by an appropriately trained occupational hygienist should be undertaken.

8.2 Soil - Site Contamination (HILs) and Preliminary Waste Classification

Soil - Site Contamination (HILs) and Preliminary Waste Classification, top 0.5 m of material below ground level and two stockpiles.

The details of the analysis results are presented in **Appendix VI - Results Tables**.

8.2.1 Heavy Metals

Twenty one (21) samples were analysed for heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc). All samples yielded concentrations below the HIL (D) guideline criteria and meet the Preliminary NSW EPA criteria assigned for General Solid Waste.

8.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)

Twenty one (21) samples were analysed for PAHs. All samples yielded concentrations below the HIL (D) guideline criteria and the Preliminary NSW EPA Waste Classification guidelines criteria for General Solid Waste.

8.2.3 Total Recoverable Hydrocarbons (TRH)

Twenty one (21) samples were analysed for TRH. All samples yielded concentrations below the Preliminary NSW EPA waste classification guidelines criteria for disposal as general solid waste.

8.2.4 Organochlorine Pesticides (OCPs) and Organophosphorous Pesticides (OPPs)

Twenty one (21) samples were analysed for OCPs and OPPs. All samples yielded concentrations below the HIL (D) guideline criteria and Preliminary NSW EPA waste classification guidelines criteria for disposal as general solid waste.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

8.2.5 Polychlorinated Biphenyl (PCBs)

Five (5) samples were analysed for PCBs. All samples yielded concentrations below the HIL (D) guideline criteria.

8.2.6 Phenols

Five (5) samples were analysed for Phenols. All samples yielded concentrations below the HIL (D) guideline criteria.

8.2.7 BTEX

Twenty one (21) samples were field screened for BTEX using a PID reader. BTEX was not detected in any of the samples screened and therefore did not warrant chemical analysis.

NOTE: This in situ preliminary waste classification is indicative only. The sampling frequency of further testing will be dependent on the projected volumes of soil to be removed and transported to an EPA licensed landfill.

8.3 Soil – Ecological Screening / Investigation Levels

Soil – Ecological Screening / Investigation Levels, top 0.5 m of material below ground level and two stockpiles.

The details of the analysis results are presented in **Appendix VI - Results Tables.**

8.3.1 Total Recoverable Hydrocarbons (TRH)

Twenty one (21) samples were analysed for TRH. All samples showed the concentrations of TRH below the Ecological Screening Levels for Commercial and Industrial land use.

8.3.2 Naphthalene, Arsenic and DDT

Twenty one (21) samples were analysed for Napthalene, Arsenic and DDT. All samples showed the concentrations below the Ecological Screening /Investigation Levels for Commercial and Industrial land use.

8.4 Asbestos

No asbestos was observed across the site during the investigation works. It should be noted, during the investigation works, vegetation cover was present across a large proportion of the site and prohibited visual inspection in many areas. During the construction/development phase of the site, if presumed asbestos materials are encountered, further investigation works by an appropriately trained occupational hygienist should be undertaken.

Five (5) samples were collected and analysed for asbestos. **Table 15** below represents the results of this analysis.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

ABN: 520 934 529 50

Page 44 of 75

Table 15. Analysis results of asbestos samples

Laboratory Sample No.	Analyte	Matrix	Sample size	Identification Results	Sample Location
7773-Asb1	Asbestos	Soil	45 g	No asbestos detected	SP1-01, 0.0 – 0.2 m bgl
7773-Asb2	Asbestos	Soil	40 g	No asbestos detected	SP1-02, 0.0 – 0.2 m bgl
7773-Asb3	Asbestos	Soil	52 g	No asbestos detected	SP1-03, 0.0 – 0.2 m bgl
7773-Asb4	Asbestos	Soil	62 g	No asbestos detected	SP2-01, 0.0 – 0.2 m bgl
7773-Asb5	Asbestos	Soil	45 g	No asbestos detected	SP2-02, 0.0 – 0.2 m bgl

8.5 Sediment – ANZECC Guidelines for Fresh and Marine Water – Sediment Guidelines

The details of the analysis results are presented in Appendix VI - Results Tables.

8.5.1 Heavy Metals

Four (4) sediment samples were analysed for heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc). One (1) sediment sample slightly exceeded the ANZECC Guidelines for ISQG-Low criteria of 20 (mg/kg) and 21 (mg/kg) for Arsenic (As) and Nickel (Ni), respectively. This sample was collected from SS-02 (refer to **Figure 2**). All of the sediment samples were below the ISQG-High criteria.

Elevated concentrations of As and Ni could be explained by the current state of the creek. It was observed that the creek was ephemeral in nature. At the time of the investigation, the water was not running, the water depth was no greater than 0.2 m and dry in many sections. As a result, this may increase concentrations of heavy metals in the creek sediment due to precipitation of heavy metals in water.

Furthermore, it is also possible that background ranges of Arsenic and Nickel within the soil and rock located outside the site, upstream of the creek, may have caused a natural increase in the creek sediment concentrations of metals within the site.

8.5.2 Poly Aromatic Hydrocarbons (PAH)

Four (4) sediment samples were analysed for PAH. All of the samples returned values below the threshold criteria.

8.6 Sediment – Ecological Screening / Investigation Levels

The details of the analysis results are presented in **Appendix VI - Results Tables.**

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

8.6.1 Total Recoverable Hydrocarbons (TRH)

Four (4) sediment samples were analysed for TRH. All of the samples returned values below the threshold criteria.

8.7 Surface Water – ANZECC Guidelines for Fresh and Marine Water (95% Species Protection)

The details of the analysis results are presented in **Appendix VI - Results Tables.**

8.7.1 Heavy Metals

Four (4) surface water samples were analysed for heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc). All of the samples returned values below the adjusted threshold criteria for 'Extremely Hard' water.

8.7.2 Total Recoverable Hydrocarbons (TRH)

Four (4) surface water samples were analysed for TRH. All of the samples returned values below the threshold criteria.

8.7.3 Poly Aromatic Hydrocarbons (PAH)

Four (4) surface water samples were analysed for PAH. All of the samples returned values below the threshold criteria.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

9 DATA QUALITY ASSESSMENT

In order to carry out the assessment of the data acquired in the course of the investigation, the US EPA Guidelines were used.

The Guidelines provide general strategy on assessing data quality criteria and performance specifications for decision making. The following is the output from most of the steps of the Data Quality Assessment (DQA) Process provided in the Guidelines. The sub-steps recommended are given in *italic*.

9.1 Data Review

Quality control reports from the laboratories subcontracted for sample analyses were reviewed. The data included laboratory blank samples, duplicate samples, control samples, spiked samples and method blanks.

The review of the QA/QC program was conducted in accordance with the items recommended by the NSW EPA to be included in the consultants' reports. Some additional recommendations from the US EPA methodology referred to by AS 4482.1 were also followed.

<u>9.1.1 COC</u>

Australian Standard AS 4482.1 defines the Chain-Of-Custody (COC) documentation as the link in the transfer of samples between the time of collection and arrival at the laboratory.

The COC utilised by ADE included the items recommended by the Standard:

- a) name of person transferred the samples
- b) name of person who received the samples
- c) date the samples were collected
- d) date the samples were received at the laboratory
- e) name and contact details of client.

The Sample Receipt Advice documentation was also supplied by Eurofins I MGT, where time of samples received was specified.

9.1.2 Record Of Holding Times

The objective was to ascertain the validity of the analysis results based on the holding time of the samples from the time of collection to the time of analysis.

The technical holding time criteria for soil samples are as follows:

- Metals: 6 months (NEPM 2013)
- TRH: 14 days (NEPM 2013)

It is recommended to preserve soil samples at 4 $^{\circ}C \pm 2 \,^{\circ}C$ until analysis

Evaluation:

Holding times provided by Eurofins I MGT and ADEs in-house Environmental and OH&S Laboratories met the recommended criteria. All of the soil samples were analysed within 4-5 days from the time of collection (refer to **Appendix VII – Analytical Reports**).

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

9.1.3 Analytical Methods Used

Refer to **Appendix VII – Analytical Results** for the specification of analytical methods used by the laboratories.

9.1.4 Laboratory Accreditation For Analytical Methods Used

Refer to **Appendix VII – Analytical Results** for the details of laboratory accreditations for analytical methods used.

9.1.5 Percent Recoveries Of Spikes And Surrogates

According to the US EPA methodology, it is recommended to consider the following actions based on the spike recovery results for inorganic analytes:

- If the spike recovery is >125% and the reported sample results are less than the Practical Quantitation Limit (< PQL), the data is acceptable for use,
- If the spike recovery is >125% or <75% and the sample results are > PQL, qualify the data for these samples as "estimated",
- If the spike recovery falls within the range of 30-74% and the sample results are < PQL, qualify the data for these samples as "estimated and may be inaccurate or imprecise",
- If spike recovery results fall <30% and the sample results are < PQL, qualify the data for these samples as "unusable".

Environmental and OH&S Laboratory limit of 70-130% for inorganics / metals, and 60-140% for organics was used in order to validate matrix spikes and laboratory control samples. The laboratory limit of 50-150% was implemented in order to validate surrogate recoveries for organic analytes. These criteria, generally, conform to the USEPA recommended standards.

Analysis of spikes and surrogates showed 294 valid values and 0 invalid values.

9.1.6 Laboratory Duplicate Results

Duplicate sample determinations were provided by the laboratories to demonstrate acceptable method precision at the time of analysis. Duplicates are, generally, analysed at a frequency of 1 for every 10 samples. AS 4482.1 provides an acceptable range of the Relative Percent Difference (RPD) values up to 50% for quality control samples.

Analysis of laboratory duplicates showed 311 valid values and 0 invalid values of RPD. Refer to the quality results section of the reports provided in **Appendix VII – Analytical Reports**.

9.1.7 Laboratory Blank Results

The assessment of blank analysis results was to determine the existence and magnitude of contamination resulting from laboratory activities.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

The assessment of blank analysis results was carried out in order to determine the existence and magnitude of contamination resulting from laboratory activities. No contaminants were found in the blanks analysed by the laboratory.

Analysis of laboratory blanks showed 265 valid values and 0 invalid values. Refer to the quality results section of the reports provided in **Appendix VII – Analytical Reports.**

<u>9.1.8 Instrument Detection Limits / Method Detection Limits / Matrix Or Practical</u> <u>Quantification Limits</u>

The smallest amount of a substance that can be detected by EOH&S and Eurofins I MGT Laboratories above the noise in a procedure and within a stated confidence level is the detection limit. Current practice identifies several detection limits. These are the instrument detection limit (IDL), the lower level detection (LLD), the method detection limit (MDL) and the practical quantitation limit (PQL).

The relationship among these levels is approximately IDL : LLD : MDL : PQL = 1 : 2 : 4 : 10. Refer to **Appendix VII** for the list of PQLs provided by EOH&S and Eurofins I MGT Laboratories. When dilution of a sample is involved in the sample preparation, the method detection limit is adjusted by the dilution factor.

9.1.9 Blind Replicate Samples

Three (3) blind replicate (two (2) soil and one (1) water) samples were collected to determine the variability of the sampling process. Samples were collected simultaneously from the same source and under identical conditions as the original sample.

Australian Standard 4482.1 specifies the typical RPD values for blind replicate samples to be 30% - 50%. Combining the AS acceptance criteria with the recommendations of the USEPA methodology, the control limits described below were used.

- 1. A control limit of 50% for the RPD for original and blind replicate sample values greater than or equal to 5x the Detection Limit (DL),
- 2. A control limit of ± the DL if either the sample or duplicate value is less than 5x the DL.
- 3. If both samples values are less than the DL, the RPD is not calculated.

The tables below represent the Relative Percent Difference (RPD) values for the original and blind replicate samples collected during the soil and water investigations. Where condition 2 or 3 was applicable, an estimated level of agreement between the results was provided and, where appropriate, an RPD value calculated.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Table 16. Comparison of original sample 7773-BH08-A and blind replicate 7773-BR1 soil samples analysed by EOH&S Laboratory, mg/kg.

Analyte	DL	7773-BH03-A, mg/kg	7773-BR1, mg/kg	RPD %	Level of Agreement	Validation result
Arsenic	2	3.8	7.4	N/A	LLA	N
Cadmium	0.3	<0.3	<0.3	N/A	GLA	V
Chromium	5	20	30	N/A	LLA	N
Copper	5	15	16	5.19	GLA	V
Lead	10	28	38	N/A	GLA	V
Mercury	0.2	<0.2	<0.2	N/A	GLA	V
Nickel	10	18	24.8	N/A	GLA	V
Zinc	5	39	47.3	19.24	GLA	V
Benzo(a)pyrene	0.3	<0.3	<0.3	N/A	GLA	V
Total PAH	4.8	<4.8	<4.8	N/A	GLA	V
TRH C ₆ -C ₁₀	35	<35	<35	N/A	GLA	V
TRH C ₁₀ -C ₁₆	50	<50	<50	N/A	GLA	V
TRH C ₁₆ -C ₃₄	100	<100	<100	N/A	GLA	V
TRH C ₃₄ -C ₄₀	100	<100	<100	N/A	GLA	V
N/A – Not Applicat	ole (Ref	fer to 9.1.9) G	LA – good level	of agreement	V – valid	result LLA –

low level of agreement N – not valid result

Analysis results of the blind rep sample showed 14 analytes to be valid and 2 to be invalid.

Table 17. Comparison of original sample 7773-BH16-A and blind replicate 7773-BR2 soil samples analysed by EOH&S Laboratory, mg/kg.

Analyte	DL	7773-BH16-A, mg/kg	7773-BR2, mg/kg	RPD %	Level of Agreement	Validation result
Arsenic	2	25.2	9.7	N/A	LLA	Ν
Cadmium	0.3	<0.3	<0.3	N/A	GLA	V
Chromium	5	21	30.5	N/A	LLA	Ν
Copper	5	21	21.1	N/A	GLA	V
Lead	10	28	26	N/A	GLA	V
Mercury	0.2	<0.2	<0.2	N/A	GLA	V
Nickel	10	26.8	31.7	N/A	GLA	V
Zinc	5	39.7	28.7	32.16	GLA	V
Benzo(a)pyrene	0.3	<0.3	<0.3	N/A	GLA	V
Total PAH	4.8	<4.8	<4.8	N/A	GLA	V
TRH C ₆ -C ₁₀	35	<35	<35	N/A	GLA	V
TRH C ₁₀ -C ₁₆	50	<50	<50	N/A	GLA	V
TRH C ₁₆ -C ₃₄	100	<100	<100	N/A	GLA	V
TRH C ₃₄ -C ₄₀	100	<100	<100	N/A	GLA	V
N/A – Not Applicat	I/A – Not Applicable (Refer to 9.1.9)			l of agreement	V – valid	result LLA –

N/A – Not Applicable (Refer to) low level of agreement N

N – not valid result

Analysis results of the blind rep sample showed 14 analytes to be valid and 2 to be invalid.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Analyte	DL	7773-SW-04 μg/L	7773-SW- BR1, μg/L	RPD %	Level of Agreement	Validation result
Arsenic (filtered)	1	<1	<1	N/A	GLA	V
Cadmium (filtered)	0.1	<0.1	<0.1	N/A	GLA	V
Chromium (filtered)	1	<1	<1	N/A	GLA	V
Copper (filtered)	1	3	4	N/A	GLA	V
Lead (filtered)	1	<1	<1	N/A	GLA	V
Mercury (filtered)	0.1	<0.1	<0.1	N/A	GLA	V
Nickel (filtered)	1	2	2	N/A	GLA	V
Zinc (filtered)	5	<5	<5	N/A	GLA	V
Benzo(a)pyrene	0.3	<0.3	<0.3	N/A	GLA	V
Total PAH	4.8	<4.8	<4.8	N/A	GLA	V
TRH C ₁₀ -C ₁₆	50	<50	<50	N/A	GLA	V
TRH C ₁₆ -C ₃₄	100	<100	<100	N/A	GLA	V
TRH C ₃₄ -C ₄₀	100	<100	<100	N/A	GLA	V
N/A – Not Applicable (B	efer to 9	19 $GIA - ga$	od level of agre	ement	V – valid resi	ılt ΠΔ-

Table 18. Comparison of original sample 7773-SW-04 and blind replicate 7773-SW-BR1 water samples analysed by EOH&S Laboratory, mg/kg.

N/A – Not Applicable (Refer to 9.1.9) GLA – good level of agreement V – valid result LLA – low level of agreement N – not valid result

Analysis results of the blind rep sample showed 13 analytes to be valid (RPD) and none to be invalid.

9.1.10 Field Rinsate Samples

One rinsate sample collected during the decontamination of the sampling equipment was analysed. The purpose of this analysis was to determine whether the decontamination procedures were performed correctly and to assess the possibility of cross-contamination during the sampling procedures.

The rinsate sample 7773-Rinsate1 collected on 25.06.2014 during the decontamination of augers, trowels and water sampling equipment showed no presence of contaminants above the detection limit.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Analysis results of the rinsate sample showed 13 analytes to be valid (<DL) and none to be invalid. Refer to **Table 19** below.

Analyte	7773-Rinsate1, μg/L	Validation result
TRH C10-C16	<50	V
TRH C16-C34	<100	V
TRH C34-C40	<100	V
Benzo(a)pyrene	<0.1	V
Total PAHs	<4.8	V
Arsenic	<0.001	V
Cadmium	<0.0001	V
Chromium	<0.001	V
Copper	<0.001	V
Mercury	<0.0001	V
Nickel	<0.001	V
Lead	<0.001	V
Zinc	<0.005	V

Table 19. Analysis of rinsate sample 7773-Rinsate1, μg/L.

V – valid result, N – not valid result

9.1.11 Trip Blank Samples

Two (2) trip blank samples were prepared prior to the sampling events and were stored with the investigative samples throughout the sampling event. One (1) trip blank was stored with the soil samples and one (1) with the water samples. The sample was then packaged for shipment with the other samples and submitted for analysis. Trip blanks are used to determine if samples were contaminated during storage and/or transportation back to the laboratory (a measure of sample handling variability resulting in positive bias in contaminant concentration).

The trip blank samples showed 10 valid values and 0 invalid values.

9.1.12 Spike BTEX Sample

Two (2) spiked BTEX samples were analysed in order to estimate the loss of volatile compounds during the storage, handling and transportation of samples collected in the field.

The samples were prepared by Environmental and OH&S Laboratory prior to the field work. The samples were stored, handled, and transported in exactly the same way as the field samples. One (1) spike BTEX sample was stored with the soil samples and one (1) spike BTEX sample was stored with the water samples. The percent recoveries for BTEX are given in Table 20and Table 21 below.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610
 Internet:

 site:
 www.ADenvirotech.com.au

 e-mail:
 info@ADenvirotech.com.au

Table 20. Analysis results of spiked BTEX sample 7773-VOC-Spike1 analysed by Environmental and OH&S Laboratory, μ g/L.

Analyte	Acceptable range, %	7773-VOC-Spike1 Spiked Concentration, μg/L	7773-VOC-Spike1 Recovered Concentration, <u>%</u>	<u>Validation</u> <u>result</u>
Benzene	60 - 140	40	112	V
Toluene	60 - 140	40	106	V
Ethyl Benzene	60 - 140	40	108	V
m, p- Xylene(s)	60 - 140	40	108	V
o-Xylene	60 - 140	40	111	V

V – valid result, N – not valid result

The results for 5 analytes were reported. All results showed valid values.

Table 21. Analysis results of spiked VOC sample 7773-VOC-Spike2 analysed by Environmental and OH&S Laboratory, μg/L.

Analyte	Acceptable range, %	7773-VOC-Spike2 Spiked Concentration, μg/L	7773-VOC-Spike2 Recovered Concentration, %	Validation result
Benzene	60 - 140	40	112	V
Toluene	60 - 140	40	108	V
Ethyl Benzene	60 - 140	40	109	V
m, p- Xylene(s)	60 - 140	40	108	V
o-Xylene	60 - 140	40	110	V

V – valid result, N – not valid result

The results for 5 analytes were reported. All results showed valid values. <u>9.1.13 Laboratory Split Sample</u>

Split samples were analysed to measure the variability between laboratories.

Two (2) split soil samples were submitted for analysis at Eurofins I MGT. These were compared to the original samples analysed by Environmental and OH&S Laboratory.

Table 22. Comparison of Split soil sample 7773-SP1 analysed by Eurofins I MGT and soil sample 7773-BH05-A analysed by Environmental and OH&S Laboratory, mg/kg.

Analyte	EOH&S's DL	7773-BH16-A, mg/kg	MGT's DL	7773 - SP1	RPD	Level of Agreement	Validation result
Arsenic	2	25.2	2	9.4	N/A	LLA	Ν
Cadmium	0.3	<0.3	0.4	<0.4	N/A	GLA	۷*
Chromium	5	21	5	23	N/A	GLA	V
Copper	5	21	5	21	N/A	GLA	V
Lead	10	28	5	13	N/A	LLA	N
Mercury	0.2	<0.2	0.05	<0.05	N/A	GLA	V
Nickel	10	26.8	5	23	N/A	GLA	V
Zinc	5	39.7	5	42	5.6	GLA	V

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Table 22 Continued...

Analyte	EOH&S's DL	7773-BH16- A, mg/kg	MGT's DL	7773 - SP1	RPD	Level of Agreement	Validati on result
Benzo(a)pyrene	0.3	<0.3	0.5	<0.5	N/A	GLA	۷*
Total PAH	4.8	<4.8	0.5	<0.5	N/A	N/A	V*
TRH C6-C10	35	<35	20	<20	N/A	GLA	V*
TRH C10-C16	50	<50	50	<50	N/A	GLA	V*
TRH C16-C34	100	<100	100	<100	N/A	GLA	V*
TRH C34-C40	100	<100	100	<100	N/A	GLA	V*
N/A – Not Applicabl	e (Refer to 9.	1.9) GLA – g	ood level o	fagreeme	ent '	/ – valid result	LLA –

low level of agreement N – not valid result

V* - Deemed acceptable, as values for both samples analysed by Eurofins I MGT and EOH&S Laboratory are below laboratory detection limits.

The assessment variability of the split samples showed 12 valid values and 2 invalid values.

9.2 QA/QC Data Evaluation

The qualitative and quantitative descriptors, so called Data Quality Indicators (DQIs), were used in interpreting the degree of acceptability of the data acquired in the course of the investigation.

Precision	Precision is a measure of agreement among replicate measurements of the
	same property, made under prescribed similar conditions. Review of
	laboratory and field duplicate measurements showed acceptable levels of
	precision.
_	Accuracy is a measure of the closeness of an individual measurement to the
Accuracy	true value. Accuracy is determined by analysing a reference material of
	known pollutant concentration or by re-analysing a sample to which a
	material of known concentration or amount of pollutant has been added.
	Accuracy was also evaluated by reviewing the values of percentage recoveries reported in spike samples.
Representativeness	Representativeness is a measure of the degree to which data accurately and
Representativeness	precisely represent a characteristic of a population parameter at a sampling
	point or for a process condition or environmental condition.
	It was verified that each point in space had an equal probability of being selected for sampling.
	The site investigation revealed that soil samples collected were representative of the stratiographic formations from which they were collected. It appears that measurements of the population of interest were made in such a manner that the resulting data appropriately reflect the environment investigated.
	Comparability is the qualitative term that expresses the ability to fairly
Comparability	compare sample test results taken from the same site at different times.
	ADE's field personnel assigned for the project had considerable experience in

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

	 the environmental investigations of contaminated sites. Training records of the personnel are kept in the Quality Assurance Manual ADE-QAM-III. Sampling and measurements in the field were performed by the same personnel during the field stage of the investigation. Standard ADE's environmental investigation procedures were used by the personnel in the field. No deviations from the sampling procedures were observed by the site supervisor during the fieldwork. Therefore, none or negligent bias in the data collection was expected. 					
	The spatial and temporal changes on the site during this period did not have significant influence in order to bias the data due to the environmental dynamics.					
	Units in which the data was measured in the field and the laboratory analysis had the same metrics.					
Completeness	Documentation Completeness					
	In the author's opinion, the documentation used in the course of the investigation, including:					
	 Field observation logs, Chain of Custodies, Orders, Laboratory accreditation, and Laboratory reports. 					
	were completed to satisfactory standards.					
	Data Completeness					
	Please see the following table, providing a summary of the data validity.					

The principle DQIs are precision, accuracy, representativeness, comparability, and completeness referred to by the acronym PARCC. Precision and accuracy are the quantitative measures, representativeness and comparability are qualitative, and completeness is a combination of both quantitative and qualitative measures.

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610

In the following, Table 23 summarises the DQO reconciliation.

 Table 23.
 Summary of DQO reconciliation.

QA/QC Item	DQO Criteria	Valid Data	Not Valid Data	Completeness	Conclusion
Laboratory duplicate samples	95 %	311	0	100%	Acceptable
Laboratory blank samples	100 %	265	0	100%	Acceptable
Laboratory spike/surrogate recoveries	95 %	294	0	100%	Acceptable
Laboratory control (split) sample	75%	12	2	85.7%	Acceptable
Blind replicate samples	75 %	41	4	91.1%	Acceptable
Rinsate sample	75 %	13	0	100%	Acceptable
Trip blank sample	95 %	10	0	100%	Acceptable
Spike BTEX	75 %	10	0	100%	Acceptable
Total:					
Overall Completeness:	95 %	956	6	99.4	Acceptable

The ratio of the valid data to the total number of the analyses conducted in the QA/QC program yielded 99.4%. As such, the data collected in the course of the investigation meets the target result for the completeness of the QA/QC program stated in the DQOs (95%).

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

10 CONCLUSIONS

Based on the data and evidence collected from the Phase II DSI the following conclusions can be made:

10.1 Site History Appraisal and Site Inspection

- The site has been exposed to a prolonged period of potentially contaminating activities due to its close proximity to commercial/industrial infrastructure and major road;
- The site inspection revealed healthy vegetation showing minimal signs of discolouration or stress; and
- Fill materials were observed within the site.

10.2 Soil Contamination Investigation

Soil contamination investigation - top 0.5 m of material below ground level and two stockpiles.

10.2.1 NEPM Schedule B(1) HIL (D) guideline values

The samples collected from the site meet the NEPM Schedule B(1) HIL (D) guideline criteria with regards to heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), PAHs, OCPs/OPPs, Phenols and PCBs.

10.2.2 NEPM Schedule B(1) Ecological Screening / Investigation Levels

TRH

All samples showed concentrations of TRH below the assessment criteria for commercial/industrial land use (*NEPM Schedule B(1) Ecological Screening/Investigation Levels (2013)*).

Naphthalene, Arsenic and DDT

All samples showed concentrations of Naphthalene, Arsenic and DDT were below the assessment criteria for commercial/industrial land use (*NEPM Schedule B(1) Ecological Screening/Investigation Levels (2013)*).

10.2.3 Asbestos

No asbestos was observed on the site during the investigation works. None of the five (5) soil samples collected during the investigation were found to contain asbestos.

10.3 Sediment

10.3.1 ANZECC Guidelines for Fresh and Marine Water – Sediment Guidelines

Polycyclic Aromatic Hydrocarbons (PAH)

The concentrations of PAH were observed below the site assessment criteria.

Heavy Metals (As, Ca, Cd, Cu, Pb, Hg, Ni and Zn)

Telephone: NSW: (02) 9648 6669 QLD: (07) 5519 4610

The concentration of metals Cd, Cr, Cu, Pb, Hg and Zn were observed below the site assessment criteria. All of the samples were observed below the ISQG-High criteria.

The concentrations of Arsenic (As) and Nickel (Ni) were detected slightly above the ISQG-Low trigger value in one (1) of the four (4) sediment samples.

Elevated concentrations of As and Ni could be explained by the current state of the creek. It was observed that the creek was ephemeral in nature. At the time of the investigation, the water was not running, the water depth was no greater than 0.2 m and dry in many sections. As a result, this may increase concentrations of heavy metals in the creek sediment due to precipitation of heavy metals in water.

Furthermore, it is also possible that background ranges of As and Ni within the soil and rock located outside the site, upstream of the creek, may have caused a natural increase in the creek sediment concentrations of metals within the site.

It should be noted, during the field investigation works no aquatic animals or amphibians were observed in or around the creek.

Taking into account the above and based on the creeks size and capacity, the impact of the slightly increased concentrations of Arsenic and Nickel on water ecological health within the creek and greater river catchment is considered minimal and therefore does not warrant any further investigations and the results are deemed acceptable.

10.3.2 Ecological Screening / Investigation Levels

Total Recoverable Hydrocarbons

The concentrations of TRH were observed below the adopted site assessment criteria.

10.4 Surface Water

10.4.1 ANZECC Guidelines for Fresh and Marine Water

Total Recoverable Hydrocarbons (TRH)

The concentrations of TRH fractions were observed below the adopted site assessment criteria.

Polycyclic Aromatic Hydrocarbons (PAHs)

The concentrations of Anthracene, Naphthalene, Phenanthrene, Fluoranthene and Benzo(a)pyrene were observed below the adopted site assessment criteria.

Dissolved Heavy Metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn)

The concentration of metals As, Cu, Cd, Cr, Pb, Hg, Ni and Zn were observed below the adopted site assessment criteria.

10.5 Preliminary Waste Classification

With exception to the area where asbestos materials were identified, the concentrations of metals (As, Cd, Cr, Hg, Pb, Cu, Ni and Zn), Benzo(a)pyrene, petroleum hydrocarbons (TRH), poly-aromatic

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

hydrocarbons (PAHs), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs) in the soil samples collected meet the NSW EPA criteria assigned for *General Solid Waste*.

NOTE: This in situ preliminary waste classification is indicative only. The sampling frequency of further testing will be dependent on the projected volumes of soil to be removed and transported to an EPA licensed landfill.

10.6 Contamination Status of the Site

It is the opinion of ADE that no contamination of the site from potential contaminating practices undertaken both on and off site, had occurred prior to the time the investigation took place.

The concentrations of the potential contaminants within the soil, sediment and surface water samples collected were below the NEPM Schedule B (1) Health Based Investigation Levels (HIL) D, Ecological Screening Levels (commercial/industrial) and ANZECC Guideline s for Fresh and Marine Water Quality assessment criteria's.

Based on the findings of the detailed site investigation, the site is deemed suitable for commercial/industrial land use and the proposed development.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

11 LIMITATIONS

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based on information provided by the client. The advice herein relates only to this project and all results, and conclusions made should be reviewed by a competent and experienced person with experience in environmental investigations, before being used for any other purpose. A.D. Envirotech Australia Pty Ltd (ADE) accepts no liability for use or interpretation by any person or body outside the consent authority. This report should not be reproduced or amended in any away without prior approval by the client or ADE and should not be relied upon by any other party, who should make their own independent enquiries.

The extent of sampling of soils and subsequent analysis has been necessarily limited and has been targeted towards areas where contamination is considered to be most likely based on the knowledge of the site history and visual observation. This approach maximises the probability of identifying contaminants, however, it may not identify contamination which occurs in unexpected locations or from unexpected sources.

Further, soils rock and aquifer conditions are often variable, resulting in non-homogenous contaminant distributions across a site. Contaminant concentrations have been identified at chosen sample locations, however, conditions between samples locations can only be inferred on the basis of the estimated geological and hydrogeological conditions and the nature and extent of indentified contamination. Boundaries between zones of variable contamination are often indistinct and have been interpreted based on available information and the application of professional judgement. The accuracy with which the subsurface conditions have been characterised depends on the frequency and methods of sampling and the uniformity of subsurface conditions and is therefore limited by the scope of works undertaken.

This report does not provide a complete assessment of the environmental status of the site and it is limited to the scope defined herein. Groundwater contamination was not included in the scope of the investigation as it was understood that the proposed activities on site shall not have any effect on local groundwater.

Should information become available regarding conditions at the site including previously unknown sources of contamination, ADE reserves the right to review the report in the context of the additional information.

ADE's professional opinions are based upon its professional judgement, experience, training and results from analytical data. In some cases further testing and analysis may be required, thus producing different results and/or opinions. ADE has limited investigation to the scope agreed upon with its client.

ADE has used a degree of care and skill ordinarily exercised in similar investigations by reputable member of the Environmental Industry within Australia. No other warranty, expressed or implied, is made or intended.

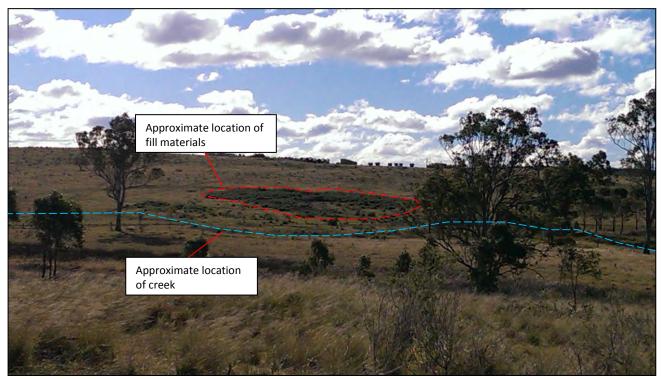
New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610
 Internet:

 site:
 www.ADenvirotech.com.au

 e-mail:
 info@ADenvirotech.com.au

12 REFERENCES

- 1. ANZECC Water Quality Guidelines, October 2000.
- 2. AS1726-1993 'Australian Standard Geotechnical Site Investigations
- 3. Assessment of Site Contamination, National Environmental Protection Measure (NEPM) 1999.
- 4. Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds
- 5. Chapman, G.A. and Murphy, C.L. (1989), Soil Landscapes of Port Hacking 1:100000 sheet. Soil Conservation Services of NSW, Sydney
- 1. Circular on Target Values and Intervention Values for soil remediation, Ministry of Housing, Spatial Planning and Environment, Netherlands 2000;
- 2. Contract Laboratory Program. National Functional Guidelines For Inorganic Data Review, USEPA, 1994
- 3. Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, September 2000
- 4. Guidance for the Data Quality Objectives Process (EPA QA/G-4)
- 5. Guidance for Data Quality Assessment: Practical Methods for Data Analysis (EPA QA/G-9)
- 6. Data Quality Assessment Statistical Toolbox (DataQUEST) (EPA QA/G-9D)
- 7. Decision Error Feasibility Trials (DEFT) Software for the Data Quality Objectives Process (EPA QA/G-4D)
- 8. Department of Natural Resources, Groundwater Bore Search, NRAtlas website, November 2010
- 9. EPA Requirements for Quality Assurance Project Plans (EPA QA/R-5)
- 10. Fetter, C. (1988), Applied Hydrogeology, Merrill Publishing Company, Ohio
- 11. Guidance for the Preparation of Standard Operating Procedures for Quality-Related Documents (EPA QA/G-6)
- 12. Guidance on Data Quality Indicators, EPA QA/G-5I
- 13. Guidelines for the NSW EPA Site Auditor Scheme" (2nd Edition), (NSW EPA, April 2006) and AS 4482.1 (2005).
- 14. State Environmental Planning Policy No.55 (Environmental Planning and Assessment Act 1979),
- 15. The Enhealth Guidelines for Asbestos in the Non-Occupational Environment (2005),
- 16. NSW EPA Sampling Design Guidelines (1995).
- 17. NEPM (2013) "Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater";
- 18. NSW Code of Practice: How to Safely Remove Asbestos (2011)
- 19. Waste Classification Guidelines Part 1: Classifying Waste, EPA, 2009.


Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

APPENDIX I

PHOTOGRAPHS

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **62** of **7**

Photograph 1. Location of subject area, showing key features (facing north).

Photograph 2. Typical soil profile observed within the top 0.5m BGL throughout the site.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page 63 of 75

Photograph 3. Soil stockpiles, included within the scope of soil investigations (facing south east).

Photograph 4. Subject site, fill materials

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court

Silverwater, NSW 2128

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **64** of **75**

Photograph 5. Location of surface water sample SW-03.

Photograph 6. Location of surface water sample SW-04.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court

Silverwater, NSW 2128

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **65** of **75**

APPENDIX II

LAND AND PROPERTY RECORDS

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page 66 of 75

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

TITLE SEARCH

Title Reference: 3/1145808

FOLIO: 3/	1145808			
	SEARCH DATE	TIME	EDITION NO	
	16/4/2014	 10:41 AM	2	11/11/2011
LAND				
AT EAS LOCAL PARISH	DIAGRAM DP114580	BLACKTOWN COUNTY OF CUMBERL	AND	
		רויזי		
	HEDULE (4 NOTIF)			
2 AE435 3 DP114 4 AG615 NOTATIONS	918 MORTGAGE TO 5808 RIGHT OF CA THE LAND AR 110 MORTGAGE TO	DITIONS IN THE CR D DENARKE PTY LIM ARRIAGEWAY 30 MET 30VE DESCRIBED D WESTPAC BANKING	ITED RE(S) WIDE APPURT	ENANT TO
UNREGISTE	RED DEALINGS: NI	ΓL		
*	** END OF SEARC	CH ***		

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

TITLE SEARCH

Title Reference: 2/1145808

	CO: 2/1145	808			
		ARCH DATE		EDITION NO	DATE
		/4/2014	10:40 AM	5	2/12/2013
LANI					
Z I I T	AT EASTERN LOCAL GOVE PARISH OF FITLE DIAG	RNMENT AREA MELVILLE C RAM DP114580	BLACKTOWN OUNTY OF CUMBERL	AND	
	ST SCHEDUL				
ACN	114 843 4	53 PTY LIMIT	ED		
SECO	OND SCHEDU	LE (11 NOTIF	ICATIONS)		
 1			ITIONS IN THE CR	WIN CRANT(S)	
	DP262213	RIGHT OF CA	RRIAGEWAY AFFECT	ING THE PART(S) S	HOWN SO
3		-	THE TITLE DIAGR	AM FING THE PART(S)	SHOWN SO
4			THE TITLE DIAGR		
5		RIGHT OF CA	RRIAGEWAY 21 MET	RE(S) WIDE AND VA	RIABLE
6	DP1145808		TO THE LAND ABO RRIAGEWAY & EASE	VE DESCRIBED MENT FOR SERVICES	21.5
		METRE(S) WI IN THE TITL		PART(S) SHOWN SO	BURDENED
7	DP1145808	EASEMENT FO	R SERVICES 2.5 W	IDE, 5 WIDE AND V SO BURDENED IN T	
8	DP1145808	DIAGRAM RIGHT OF CA	RRIAGEWAY 23 WID	e & 30 wide affec	TING THE
9		PART(S) SHO	WN SO BURDENED II	N THE TITLE DIAGR	AM
ש	DF1143008			RE(S) WIDE AFFECT N THE TITLE DIAGR	
10	AG367113		CESS 25 WIDE AND ATED (A) IN PLAN	VARIABLE AFFECTI	NG THE
11	AG615110		WESTPAC BANKING		
NOT	ATIONS				
			τ.		
ONKI		DEALINGS: NI			
	* * *	END OF SEARC	H ***		

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

HISTORY OF TITLE TRANSACTION

Title Reference: 2/1145808

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----16/4/2014 10:41AM

FOLIO: 2/1145808

First Title(s): OLD SYSTEM
Prior Title(s): 2/262213

Recorded	Number	Type of Instrument	C.T. Issue
18/12/2009	DP1145808	DEPOSITED PLAN	FOLIO CREATED EDITION 1
6/1/2011	AF977130	MORTGAGE	EDITION 2
17/8/2011	AG367113	TRANSFER GRANTING EASEMENT	EDITION 3
11/11/2011	AG615110	MORTGAGE	EDITION 4
2/12/2013	AI184150	DISCHARGE OF MORTGAGE	EDITION 5

*** END OF SEARCH ***

PRINTED ON 16/4/2014

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

HISTORY OF TITLE TRANSACTION

Title Reference: 3/1145808

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----16/4/2014 10:40AM

FOLIO: 3/1145808

First Title(s): OLD SYSTEM
Prior Title(s): 2/262213

Recorded	Number	Type of Instrument	C.T. Issue
18/12/2009	DP1145808	DEPOSITED PLAN	FOLIO CREATED EDITION 1
11/11/2011	AG615110	MORTGAGE	EDITION 2

*** END OF SEARCH ***

PRINTED ON 16/4/2014

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

HISTORY OF TITLE TRANSACTION

Title Reference: 2/262213

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----30/4/2014 2:36PM

FOLIO: 2/262213

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 14726 FOL 222

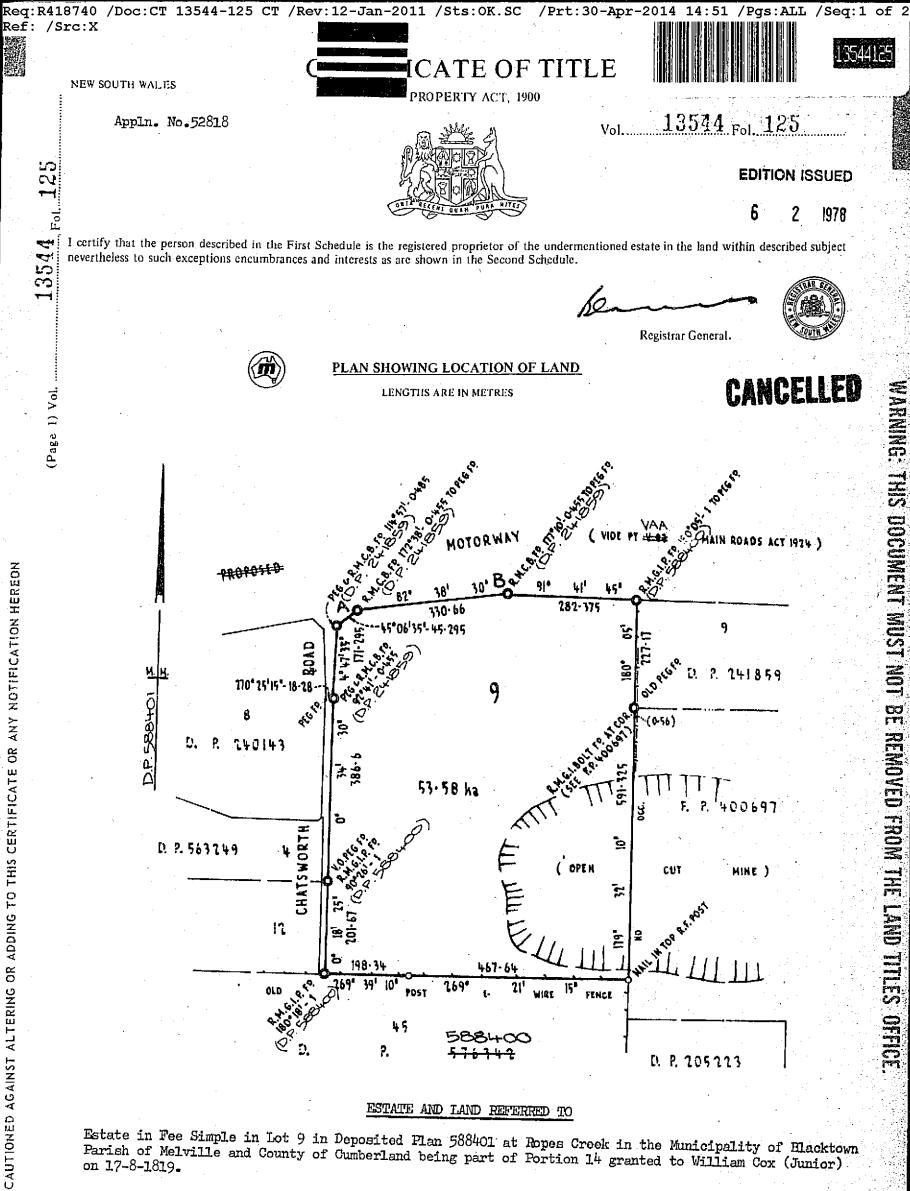
Recorded		Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
6/8/1987		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
21/5/1996		AMENDMENT: LOCAL GOVT AREA	
23/12/1996	2716424	VARIATION OF LEASE	EDITION 1
19/6/1998	5067558	DEPARTMENTAL DEALING	
9/11/2004	AB78884	REQUEST	EDITION 2
23/12/2004	AB183817	CAVEAT	
16/3/2005	AB222195	MORTGAGE	EDITION 3
12/9/2005	AB760521	WITHDRAWAL OF CAVEAT	
12/9/2005	AB760521	DISCHARGE OF MORTGAGE	
12/9/2005			
		TRANSFER	
12/9/2005		MORTGAGE	
12/9/2005	AB760525	MORTGAGE	EDITION 4
25/5/2006	DP1097123	DEPOSITED PLAN	
26/5/2006	AC224767	SUB-MORTGAGE	
26/5/2006	AC224768	SUB-MORTGAGE	
14/6/2006	AC54545	LEASE	
14/6/2006	AC54546	LEASE	
14/6/2006		LEASE	
14/6/2006	AC54548	LEASE	
14/6/2006	AC54549	LEASE	EDITION 5
11,0,2000	1105 15 15		
29/12/2006	DP1106086	DEPOSITED PLAN	
3/1/2007	AC762291	TRANSFER GRANTING EASEMENT	EDITION 6
12/8/2008	DP1127167	WITHDRAWN - DEPOSITED PLAN	
		END OF PAG	GE 1 - CONTINUED OVER
		PRINTED ON	30/4/2014

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY Telephone: 1300 052 637

A division of the Department of Finance & Services

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----30/4/2014 2:36PM


PAGE 2

FOLIO: 2/262213

Recorded	Number	Type of Instrument	C.T. Issue
9/1/2009	AE435914	DISCHARGE OF MORTGAGE	
9/1/2009	AE435915	DISCHARGE OF MORTGAGE	
9/1/2009	AE435918	MORTGAGE	EDITION 7
18/12/2009	DP1145808	DEPOSITED PLAN	FOLIO CANCELLED

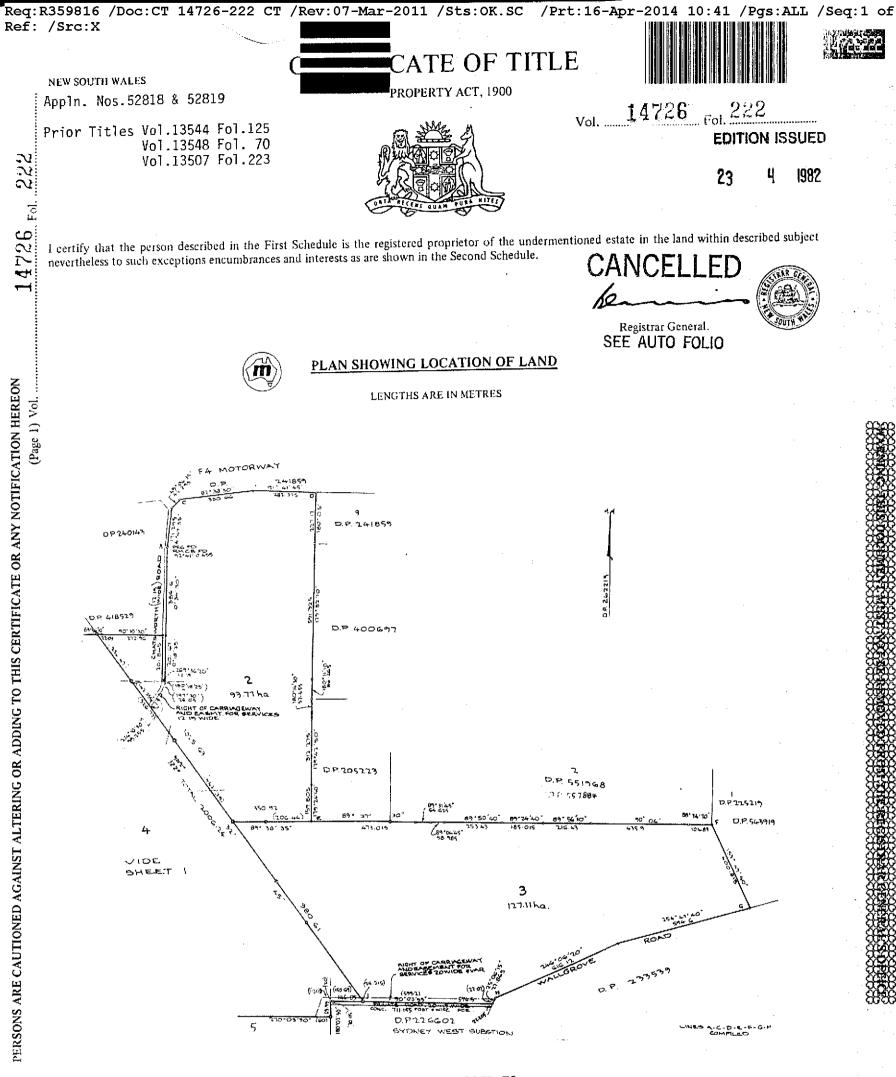
*** END OF SEARCH ***

PRINTED ON 30/4/2014

Estate in Fee Simple in Lot 9 in Deposited Plan 588401 at Ropes Creek in the Municipality of Blacktown Parish of Melville and County of Cumberland being part of Portion 14 granted to William Cox (Junior) on 17-8-1819.

FIRST SCHEDULE

RAY FITZPATRICK PTY. LIMITED.


PERSONS AR

RG 2/62

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to. 2. Book 2603 No.79 Lease to Ray Fitzpatrick Quarries Pty-Limited. Date of expiry 14-2-1979.

: /: ;	Src ק	:X	/ DC		13	544	i-Τζ	25	CT	/ Ke	•v:	L2-1	Jan	20)11	/St	:s:0	K.S	SC	/1	Prt	:30) – A	pr-	-20	14	14	:5	ц /	ьдг	s:A	ىلىا	/Se	ed: 1	-
0	ት አ				 		1	1	.	1 ¹			1		Y					} -	-	T		;	I	·							 I .	· · · · ·	7
	Signature of Registrar General			-																		-													
	ENTERED														CANCELLATION																				
	DATE												-																						
	INSTRUMENT NUMBER		-												Signature of Registror General																				•
	NATURE														ENT ERED Rec		30.3.1982			<u>.</u>															
FIRST SCHEDULE (continued)	REGISTERED PROPRIETOR										NEW CERTIFICATERS) OF TITLE ESUND ON	CEALINGS BRANCH,		SECOND SCHEDULE (continued)	PARTICULARS	Interests created pursuant to Section BBB Conveyancing Acts, 1949,	by the registration of Dapasised Plan 262213			This Deed is cancelled as to Who C	New Certificares of Tirle have issued on 22-4-980	for loss in 2005/20/ Finn the ab 201/3 - 5 1 1 min	ismolific and the second secon			and the second se			REGISTRAR GENERAL						
																DP262213 30.3.1982																			
-					Þi		·				٥ <u>٧</u>				NATURE															, jo					

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 2 in Deposited Plan 262213 at Ropes Creek in the City of Blacktown Parish of Melville and County of Cumberland being part of Portion 14 granted to William Cox (Junior) on 17-8-1819 and part of Portion 45 granted to John Thomas Campbell on 17-8-1819.

FIRST SCHEDULE

RAY FITZPATRICK PTY. LIMITED.

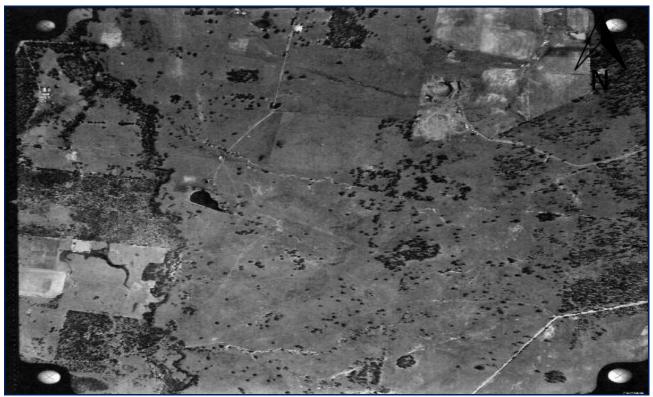
SECOND SCHEDULE

GRY 1. Reservations and conditions, if any, contained in the Crown Grants above referred to. RC(SB) 2. DP262213 Right of carriageway affecting the part of the land above described shown so burdened in the plan hereon. EG(SB) 3. DP262213 Easement for services affecting the part of the land above described shown so burdened in the plan hereon.

222	.IoH	97/7T	Vol.	
(1)()()				

(Page 2 of 2 pages)

		22 CT /Rev:07-Mar-2011 /Sts:OK. VALE BEEVE OF OF THE RECISLAN			40
					64 1
					54949 2 2 2
					50 8
				· · · · · · · · · · · · · · · · · · ·	-fri-
		AND UNREGISTERED DEALINGS	NOITATON		/
					÷.,
					· .
					·.
					· .
					· ·
					e d
				· · · · · · · · · · · · · · · · · · ·	• •
				6801-7-82 beneficial	
	E	.4005-21-16 səriqx∃ .bətimil	•VJA (.W.S.N)	sterio reencig of asse	1 2343431
			PRTICUL		
UTA.LIJONAO -	Registrat General	Sal			
CANCELLATI	Registrat General				
CPACELLATI	Registrat General	AB SCHEDULE (continued)			
CANCELLATU	Registrat General				
CANCELLATU	Registrat General				
CANCELLATU	Registrat General				
CANCELLATU	Kegistrat General				
CANCELLATI	Kegistrat General				
CANCELLATU	Registrat General				
CANCELL ATT	Registrat General				
CANCELLATU	Registrat General				
CANCELLATU	Kegistrat General				
CANCELLATI	Kegistrat General				
CANCELLATI	Registrat General				
CANCELL ATU	Registrat General				
CANCELLATI	Kegistrat General				
CVACETTVIIC	Kegistrat General				
СФИСЕТТАТІС	Registrat General				
Registrat Gener:	Registrat General		SECON		


APPENDIX III

AERIAL PHOTOGRAPHS

New South Wales Office: A. D. Envirotech Australia Pty Ltd

Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **67** of **75**

Aerial Photograph 1. Aerial photograph of the site, dated 1955. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

Aerial Photograph 2. Close up aerial photograph of the site, dated 1945. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

New South Wales Office:

Queensland Office:

ce:

Telephone:

Internet:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209

NSW: (02) 9648 6669 QLD: (07) 5519 4610

site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Aerial Photograph 3. Aerial photograph of the site, dated 1978. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

Aerial Photograph 4. Close up aerial photograph of the site, dated 1978. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Queensland Office:

A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 Telephone:

Internet:

NSW: (02) 9648 6669 QLD: (07) 5519 4610 site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Aerial Photograph 5. Close up aerial photograph of the site, dated 1978. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

Aerial Photograph 6. Close up of aerial photograph of the site, dated 1994. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

New South Wales Office:

Queensland Office:

Telephone:

NSW: (02) 9648 6669 QLD: (07) 5519 4610

Internet:

site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209

Aerial Photograph 7. Close up aerial photograph of the site, dated 1994. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

Aerial Photograph 8. Aerial photograph of the site, dated 1994. Sourced from Department of Environment and Primary Industries records, accessed on the 15.04.14

New South Wales Office:

Queensland Office:

A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669

QLD: (07) 5519 4610

Internet:

site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Page **34** of **41**

Aerial Photograph 9. Close up aerial photograph of the site, dated 2013. Sourced from maps.six.nsw.gov.au o the 15.04.2014

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Queensland Office:

A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209

Telephone:

NSW: (02) 9648 6669 QLD: (07) 5519 4610

Internet:

site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u>

Page **35** of **41**

APPENDIX IV

CONTAMINATED LAND SEARCH

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page 68 of 75

Healthy Environment, Healthy Community, Healthy Business

You are here: <u>Home</u> > <u>Contaminated land</u> > <u>Record of notices</u>

Search results

Your search	for:LGA: Blacktown City Co	relatin	hed 7 notices og to 2 sites.
			Search Again
			Refine Search
Suburb	Address	Site Name	Notices
			related to
			this site
Kings Park	21 Tattersall Road	Former Dow Corning Sealants	1 current and
		Factory	4 former
Seven Hills	27 Powers Road	Ma-Refine Oils Seven Hills	2 current

Page 1 of 1

16 April 2014

Connect

Feedback

Contact

Government

About

Web support Public consultation Contact us Offices Report pollution NSW Government jobs.nsw Accessibility Disclaimer Privacy Copyright **APPENDIX V**

SECTION 149 CERTIFICATE

New South Wales Office: A. D. Envirotech Australia Pty Ltd

Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **69** of **75**

acktown C	Council	Date:	11 APR 2014
ANNING	CERTIFICATE UNDER SECTIO	ESSMENT ACT, 1979 Enquiries: Applicants Ref.:	1 of 10 s149 Clerk 20505865:3 7025180
Applicant	DIAL A DUMP PTY LTD VIA SAI GLOBAL PROPERTY PO BOX A2151 SYDNEY SOUTH NSW 1235	RECEIVED 1 4 APR 2014	
Property	LOT 1 DP 1145808 OFF ARCHBOLD RD LOT 2 DP 1145808		
	ARCHBOLD ROAD,		
Suburb	EASTERN CREEK	Parish of Melville	

PART A PRESCRIBED INFORMATION PROVIDED PURSUANT TO SECTION 149(2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT 1979 (EP&A Act 1979)

NOTE: The following information is provided pursuant to Section 149(2) of the EP&A Act 1979, as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000*, and is applicable as of the date of this certificate.

1. NAMES OF RELEVANT PLANNING INSTRUMENTS AND DEVELOPMENT CONTROL PLANS

1.1 Environmental Planning Instruments

As at the date of this certificate the abovementioned land is not affected by Blacktown Local Environmental Plan 1988.

1.2 Development Control Plans

As at the date of this certificate the abovementioned land is not affected by Blacktown Development Control Plan 2006.

1.3 Relevant State Environmental Planning Policies (SEPPs), including draft policies, or Regional Environmental Plans deemed to be SEPPs

Council Chambers • 62 Flushcombe Road • Blacktown NSW 2148 Telephone: (02) 9839 6000 • Facsimile: (02) 9831 1961 • DX 8117 Blacktown http://www.blacktown.nsw.gov.au • email: council@blacktown.nsw.gov.au All correspondence to: The General Manager • PO Box 63 • Blacktown NSW 2148

General Manager Per: V

Page 1

State Environmental Planning Policy No. 6 - Number of Storeys in a Building

This policy sets out a method for determining the number of storeys in a building, to prevent possible confusion arising from the interpretation of various environmental planning instruments.

State Environmental Planning Policy No. 19 - Bushland in Urban Areas

This policy protects and preserves bushland within certain urban areas, as part of the natural heritage or for recreational, educational and scientific purposes. The policy is designed to protect bushland in public open space zones and reservations, and to ensure that bush preservation is given a high priority when local environmental plans for urban development are prepared.

State Environmental Planning Policy No. 32 - Urban Consolidation (Redevelopment of Land)

This policy states the Government's intention to ensure that urban consolidation objectives are met in all urban areas throughout the State. The policy focuses on the redevelopment of urban land that is no longer required for the purpose it is currently zoned or used and encourages local councils to pursue their own urban consolidation strategies to help implement the aims and objectives of the policy. Councils will continue to be responsible for the majority of rezonings. The policy sets out guidelines for the Minister to follow when considering whether to initiate a regional environmental plan (REP) to make particular sites available for consolidated urban redevelopment. Where a site is rezoned by an REP, the Minister will be the consent authority.

State Environmental Planning Policy No. 33 - Hazardous and Offensive Development

This policy provides new definitions for 'hazardous industry', 'hazardous storage establishment', 'offensive industry' and 'offensive storage establishment'. The definitions apply to all planning instruments, existing and future. The new definitions enable decisions to approve or refuse a development to be based on the merit of proposal. The consent authority must careful consider the specifics the case, the location and the way in which the proposed activity is to be carried out. The policy also requires specified matters to be considered for proposals that are 'potentially hazardous' or 'potentially offensive' as defined in the policy. For example, any application to carry out a potentially hazardous or potentially offensive development is to be advertised for public comment, and applications to carry out potentially hazardous development must be supported by a preliminary hazard analysis (PHA). The Policy does not change the role of Councils as consent authorities, land zoning, or the designated development provisions of the Environmental Planning and Assessment Act 1979.

State Environmental Planning Policy No. 55 - Remediation of Land

This policy provides state-wide planning controls for the remediation of contaminated land. The policy states that land must not be developed if it is unsuitable for a proposed use because it is contaminated. If the land is unsuitable, remediation must take place before the land is developed. The policy makes remediation permissible across the State, defines when consent is required, requires all remediation to comply with standards, ensures land is investigated if contamination is suspected, and requires councils to be notified of all remediation proposals.

State Environmental Planning Policy No. 62 - Sustainable Aquaculture

This policy encourages the sustainable expansion of the industry in NSW. The policy implements the regional strategies already developed by creating a simple approach to identity and categorise aquaculture development on the basis of its potential environmental impact. The SEPP also identifies aquaculture development as a designated development only where there are potential environmental risks.

State Environmental Planning Policy No. 64 - Advertising and Signage

This policy aims to ensure that outdoor advertising is compatible with the desired amenity and visual character of an area, provides effective communication in suitable locations and is of high quality design and finish. The SEPP was amended in August 2007 to permit and regulate outdoor advertising in transport corridors (e.g. freeways, tollways and rail corridors). The amended SEPP also aims to ensure that public benefits may be derived from advertising along and adjacent to transport corridors.

State Environmental Planning Policy - Affordable Rental Housing 2009

This policy establishes a consistent planning regime for the provision of affordable rental housing. The policy provides incentives for new affordable rental housing, facilitates the retention of existing affordable rentals, and expands the role of not-for-profit providers. It also aims to support local centres by providing housing for workers close to places of work, and facilitate development of housing for the homeless and other disadvantaged people.

State Environmental Planning Policy - Exempt and Complying Development Codes

This policy streamlines assessment processes for development that complies with specified development standards. The policy provides exempt and complying development codes that have State-wide application, identifying, in the General Exempt Development Code, types of development that are of minimal environmental impact that may be carried out without the need for development consent; and, in the General Housing Code, types of complying development that may be carried out in accordance with a complying development certificate as defined in the Environmental Planning and Assessment Act 1979.

State Environmental Planning Policy - Major Development 2005

The SEPP facilitates the development, redevelopment or protection of important urban, coastal and regional sites of economic, environmental or social significance to the State so as to facilitate the orderly use, development or conservation of those State significant sites for the benefit of the State. Schedule 3 of the SEPP identifies State significant sites and provides planning provisions for those sites. Note: This SEPP was formerly known as State Environmental Planning Policy (Major Projects) 2005.

State Environmental Planning Policy - Western Sydney Employment Area 2009

This State Environmental Planning Policy promotes economic development and the creation of employment in the Western Sydney Employment Area by providing for development, including major warehousing, distribution, freight transport, industrial, high technology and research facilities. The policy provides for coordinated planning, development and rezoning of land for employment or environmental conservation purposes.

State Environmental Planning Policy - Infrastructure 2007

This policy provides a consistent planning regime for infrastructure and the provision of services across NSW, along with providing for consultation with relevant public authorities during the assessment process. The SEPP supports greater flexibility in the location of infrastructure and service facilities along with improved regulatory certainty and efficiency.

State Environmental Planning Policy - Mining, Petroleum Production and Extractive Industries 2007

This policy aims to provide for the proper management and development of mineral, petroleum and extractive material resources for the social and economic welfare of the State. The policy establishes appropriate planning controls to encourage ecologically sustainable development.

State Environmental Planning Policy - Temporary Structures 2007

This policy provides for the erection of temporary structures and the use of places of public entertainment, while protecting public safety and local amenity. The SEPP supports the transfer of the regulation of places of public entertainment and temporary structures (such as tents, marquees and booths) from the Local Government Act 1993 to the Environmental Planning and Assessment Act 1979.

Sydney Regional Environmental Plan No. 9 - Extractive Industry Sydney Region

This plan aims to protect the viability of extractive resources in the Sydney Metropolitan Area by ensuring consideration is given to the impact of encroaching development.

2. ZONING AND LAND USE UNDER RELEVANT ENVIRONMENTAL PLANNING INSTRUMENTS

(a) The abovementioned land is subject to the provisions of State Environmental Planning Policy (Western Sydney Employment Area) 2009 and is zoned:

E2 - ENVIRONMENTAL CONSERVATION IN1 - GENERAL INDUSTRIAL

- (b) The land does not include or comprise a critical habitat. Critical habitat refers to habitat that is critical to the survival of endangered species, populations or ecological communities. Areas of critical habitat are declared under Part 3 of the Threatened Species Conservation Act 1995 and Part 7A of the Fisheries Management Act 1994.
- (c) The land is not within a conservation area.
- (d) This land does not contain an item of environmental heritage under the protection of Blacktown Local Environmental Plan 1988.

3. COMPLYING DEVELOPMENT

Complying Development under the *General Housing Code* of the Codes SEPP may be carried out on the land.

Complying Development under the *Rural Housing Code* of the Codes SEPP may be carried out on the land.

Complying Development under the *Housing Alterations Code* of the Codes SEPP may be carried out on the land.

Complying Development under the *General Development Code* of the Codes SEPP may be carried out on the land.

Complying Development under the *Commercial and Industrial Alterations Code* of the Codes SEPP may be carried out on the land.

Complying Development under the Commercial and Industrial (New Buildings and Additions) Code of the Codes SEPP may be carried out on the land.

Complying Development under the Subdivisions Code of the Codes SEPP may be carried out on the land.

Complying Development under the *Demolition Code* of the Codes SEPP may be carried out on the land.

Complying Development under the *Fire Safety Code* of the Codes SEPP may be carried out on the land.

<u>Note:</u> Despite the above provisions, if only part of a lot is subject to an exclusion or exemption under Clause 1.17A or Clause 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 then complying development may be carried out on that part of the lot that is not affected by the exclusion or exemption.

Disclaimer: This information only addresses matters raised in Clauses 1.17A and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008. It is your responsibility to ensure that you comply with the general requirements of the State Environmental Planning Policy (Exempt and Complying Codes) 2008. Failure to comply with these provisions may mean that a Complying Development Certificate issued under the provisions of State Environmental Planning Policy (Exempt and Complying Codes) 2008 is invalid.

4. COASTAL PROTECTION

The land is not affected by the operation of Sections 38 or 39 of the Coastal Protection Act, 1979.

5. MINE SUBSIDENCE

The land has not been proclaimed to be a mine subsidence district within the meaning of Section 15 of the *Mine Subsidence Compensation Act*, 1961.

6. ROAD WIDENING AND ROAD REALIGNMENT

Blacktown Local Environmental Plan 1988 and Blacktown Development Control Plan 2006 nominate preferred road patterns throughout the City.

The land is not affected by road widening/road realignment under Division 2 of Part 3 of the Roads Act 1993 and/or environmental planning instrument.

The land is affected by a road pattern.

7. COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS

Council has not adopted any policies to restrict the development of the land by reason of the likelihood of landslip, bushfire, tidal inundation, subsidence or the occurrence of acid sulphate soils. Although the Council has not adopted a specific policy to restrict development on bush fire prone land, it is bound by statewide bush fire legislation that may restrict development. In this regard, refer to point 11 below.

Council has adopted a policy on contaminated land which may restrict the development of this land. The land contamination policy applies when zoning or land use changes are proposed on land which has previously been used for certain purposes or has the potential to be affected by such purposes undertaken on nearby lands. Council's records may not be sufficient to determine all previous uses on the land, or determine activities that may have taken place on this land. Consideration of Council's policy and the application of provisions under the relevant State legislation and guidelines is necessary.

7A. FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

There are currently no mainstream or backwater flood-related development controls adopted by Council that apply to the land subject to this Certificate.

8. LAND RESERVED FOR ACQUISITION

Clauses 17, 17A and 18 of Blacktown Local Environmental Plan 1988 provide for the acquisition of certain land zoned 5(a), 5(b), 5(c), 6(a) or 6(c) by a public authority.

9. CONTRIBUTIONS PLANS

Council currently levies contributions under Section 94 of the EP&A Act 1979 for facilities and services. The further development of the subject land may incur such contribution.

This property is affected by Draft Section 94 Contributions Plan No 18 - Eastern Creek Stage 3.

9A. BIODIVERSITY CERTIFIED LAND

The land has not been granted biodiversity certification within the meaning of the Threatened Species Conservation Act 1995.

10. BIOBANKING AGREEMENTS

Council has not been notified of the existence of a biodiversity agreement under the Threatened Species Conservation Act 1995.

11. BUSH FIRE PRONE LAND

The Rural Fires and Environmental Assessment Legislation Amendment Act 2002, which came into force on 1 August 2002, introduced development provisions for bush fire prone land as shown on a Bush Fire Prone Land Map. "Bush fire prone land" is land that has been designated by the Commissioner of the NSW Rural Fire Service as being bush fire prone due to characteristics of vegetation and topography. The land the subject of this certificate has been identified on Council's Bush Fire Prone Land Map as being:

clear of any bush fire prone land

On land that is bush fire prone, certain development may require further consideration under Section 79BA or Section 91 of the EP&A Act 1979 and under Section 100B of the *Rural Fires Act 1997*.

12. PROPERTY VEGETATION PLANS

Land to which this Certificate applies is not subject to a Property Vegetation Plan under the provisions of the *Native Vegetation Act 2003*.

13. ORDERS UNDER TREES (DISPUTES BETWEEN NEIGHBOURS) ACT 2006

Land to which this Certificate applies is not the subject of an order made under the Trees (Disputes Between Neighbours) Act 2006.

14. DIRECTIONS UNDER PART 3A

Land to which this Certificate applies is not subject to the above.

15. SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

Land to which this Certificate applies is not subject to the above.

16. SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

Land to which this Certificate applies is not subject to the above.

17. SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

Land to which this Certificate applies is not subject to the above.

18. MATTERS ARISING UNDER THE CONTAMINATED LAND MANAGEMENT ACT 1997 AND CONTAMINATED LAND MANAGEMENT AMENDMENT ACT 2008

- (a) The land to which this certificate relates has not been declared to be significantly contaminated land at the date when the certificate was issued.
- (b) The land to which the certificate relates is not subject to a management order at the date when the certificate was issued.
- (c) The land to which this certificate relates is not the subject of an approved voluntary management proposal at the date when the certificate was issued.
- (d) The land to which this certificate relates is not subject to an ongoing maintenance order as at the date when the certificate was issued.
- (e) The land to which this certificate relates is not the subject of a site audit statement provided to the Council.

PART B

ADDITIONAL INFORMATION PROVIDED PURSUANT TO SECTION 149(5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT 1979 (EP&A Act 1979)

NOTE: When information pursuant to section 149(5) is requested the Council is under no obligation to furnish any of the information supplied herein pursuant to that section. Council draws your attention to section 149(6) which states that a Council shall not incur any liability in respect of any advice provided in good faith pursuant to sub-section (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this Certificate.

This advice is provided in accordance with Section 149(5) and 149(6) of the EP&A Act 1979:

The land is affected by a tree preservation control under Blacktown Local Environmental Plan 1988. A person shall not ringbark, cut down, lop, top, remove, injure or wilfully destroy any tree, or cause any tree to be ringbarked, cut down, topped, lopped, injured or wilfully destroyed, except with the consent of the Council.

The provisions of any covenant, agreement or instrument applying to this land purporting to restrict or prohibit certain development may be inconsistent with the provisions of a Regional Environmental Plan, State Environmental Planning Policy or Blacktown Local Environmental Plan 1988, in which case the provisions of any such covenant, agreement or instrument may be overridden.

The *Threatened Species Conservation Act 1995* provides for the conservation of threatened species, populations and ecological communities of animals and plants. The *Threatened Species Conservation Act* amended the *Environmental Planning and Assessment Act 1979* to require, amongst other things, that:-

- (a) a critical habitat (as defined in the *Threatened Species Conservation Act 1995*) be identified in environmental planning instruments;
- (b) consent authorities and determining authorities must, when considering proposed development or an activity, assess whether it is likely to significantly affect threatened species, populations and ecological communities, or their habitats, and, if a significant effect is likely, to require the preparation of a species impact statement in accordance with the requirements of the *Threatened Species Conservation Act 1995*;
- (c) consent authorities and determining authorities must, when considering proposed development or an activity, have regard to the relevant recovery plans and threat abatement plans; and
- (d) a regime for concurrence and consultation between consent authorities and determining authorities and the Minister administering the *Threatened Species Conservation Act* 1995 or the Director-General of the National Parks and Wildlife be instructed to aid the assessment process under the *Environmental Planning & Assessment Act* 1979.

The Commonwealth Environment Protection and Biodiversity Conservation Act 1999 provides protection for items of national significance. The Act requires a separate Commonwealth approval to be obtained where an action is likely to have significant impacts on items of national environmental significance. Items of national environmental significance include, amongst other things, nationally threatened animal and plant species and ecological communities. The Commonwealth Department of the Environment and Water Resources should be contacted for further advice.

General Manager Per: **End of Certificate**

APPENDIX VI

RESULTS TABLE

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209

Telephone: NSW: (02) 9648 6669 QLD: (07) 5519 4610

Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: info@ADenvirotech.com.au ABN: 520 934 529 50

Page **70** of **75**

Project 7773 / DSI Eastern Creek NSW Soil Results

	NSW DECC Health-based Investigation Levels, HIL D Criteria ^{1,2}	Ecological Screening / Investigation Levels ¹ Commercial and Industrial														
Sample ID	mg/kg	mg/kg	7773-C1	7773-C2	7773-C3	7773-C4	7773-C5	7773-C6	7773-C7	7773-C8	7773-C9	7773-C10	7773-C11	7773-C12	7773-C13	7773-C14
Data of Complian	-		7773-BH01-A 25.06.2014	7773-BH02-A 25.06.2014	7773-BH03-A	7773-BH04-A	7773-BH05-A	7773-BH06-A	7773-BH07-A 25.06.2014	7773-BH08-A	7773-BH09-A	7773-BH10-A	7773-BH11-A	7773-BH12-A	7773-BH13-A	7773-BH14-A
Date of Sampling Depth(m)	-		0.0-0.2	0.0-0.2	25.06.2014 0.0-0.2	25.06.2014 0.0-0.2	25.06.2014 0.0-0.2	25.06.2014 0.0-0.2	0.0-0.2	25.06.2014 0.0-0.2						
Inorganics			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Arsenic	3000	1604	10.2	19.5	11.0	14.1	10.3	9.1	11.9	3.8	8.1	8.1	2.4	8.3	2.0	6.5
Cadmium	900.00	1004	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Chromium (total)	3600		31.2	22.8	18.5	18.0	12.6	25.4	140.1	20.3	23.4	14.4	17.9	14.4	19.8	16.7
Copper	240 000		35.3	13.0	25.6	23.2	71.9	67.3	30.0	14.6	15.2	18.0	14.3	19.2	48.2	9.5
Lead	1 500		36.6	20.7	24.2	28.3	160.3	38.1	27.2	28.1	29.3	31.2	21.5	32.4	23.5	27.4
Mercury	730		0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel	6 000		33.9	12.0	15.7	19.3	10.0	27.9	130.0	18.0	15.2	15.6	10.0	12.0	18.6	10.0
Zinc	400 000		100.0	27.2	48.4	38.6	240.0	55.9	52.9	39.4	36.3	41.9	27.5	36.0	47.0	21.4
TRH																
TRH C6-C10		215	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
TRH C10-C16		170	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH C16-C34		1 700	<100	<100	<100	<100	140	<100	<100	<100	<100	<100	<100	<100	<100	<100
TRH C34-C40		3 300	<100	<100	<100	<100	160	<100	<100	<100	<100	<100	<100	<100	<100	<100
РАН			-	-		-	-	-			-			_		
Benzo(a)pyrene		1.40	<3	<3	<3	<3	0.56	<3	<3	<3	<3	<3	<3	<3	<3	<3
Carcinogenic PAHs																
(as BaP TEQ) ³	40		<0.73	<0.73	<0.73	<0.73	1.08	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73	<0.73
Total PAH ³	4 000		<4.8	<4.8	<4.8	<4.8	7.04	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8
Naphthalene		370	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
OCPs				1	1	1	1	1		1	1	1	1	1	1	
Aldrin	45*		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	45***		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlordane	530		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
DDT+DDD+DDE	3 600		<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
DDT		640	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Endosulfan	2 000 50		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Heptachlor	50		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
OPPs chlorpurifac			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos chlorpyrifos methyl			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion			<0.1	<0.1	<0.1	<0.1	0.32	0.30	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenols				_	_					_						
Phenols	240 000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pentachlorophenal	660		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Cresols	25 000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCBs																
PCBs (total)	7		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Notes to table:																

Indicates contaminant above HIL D criteria Indicates contaminant above Ecological Screening Levels 1 NEPM Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater, 2013 2 NSW DEC Guidelines for the NSW Site Auditor Scheme, 2006

3 PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF. # The maximum allowable if dieldrin is not present

The maximum allowable if aldrin is not present

Results caludated as average value of sample triplicate ### Results caludated as average value of sample triplicate Total concentrations were calculated using the detection limit integer where one or more sample results used in the calculation were below the detection limit for the method.

Project 7773 / DSI Eastern Creek NSW Soil Results

Soli Results									
	NSW DECC								
	Health-based								
	Investigation Levels,	Ecological Screening / Investigation Levels ¹							
	HIL D	Commercial and Industrial							
	Criteria ^{1, 2}								
Sample ID	mg/kg	mg/kg	7773-C15	7773-C16	7773-C17	7773-C18	7773-C19	7773-C20	7773-C21
			7773-BH15-A	7773-BH16-A	7773-SP1-01A	7773-SP1-02A	7773-SP1-03A	7773-SP2-01A	7773-SP2-02A
Date of Sampling	1		25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014	25.06.2014
Depth(m)			0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Inorganics									
Arsenic	3000	1604	11.3	25.2	4.3	3.9	5.0	3.6	9.2
		1004			0.30				
Cadmium	900.00		0.30	0.30		0.30	0.30	0.30	0.30
Chromium (total)	3600		13.0	21.0	15.9	18.8	36.0	28.7	20.7
Copper	240 000		14.2	21.0	31.7	86.4	38.3	24.3	14.2
Lead	1 500		24.8	28.0	29.1	27.6	26.7	21.0	18.5
Mercury	730		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel	6 000		10.0	26.8	17.2	20.0	46.4	19.9	13.1
Zinc	400 000		37.8	39.7	45.0	51.3	61.5	78.4	29.4
TRH		-							
TRH C6-C10		215	<35	<35	<35	<35	<35	<35	<35
TRH C10-C16		170	<50	<50	<50	<50	<50	<50	<50
TRH C16-C34		170	<100	<100	<100	<100	<100	<100	<100
TRH C34-C40		3 300	<100	<100	<100	<100		<100	<100
		3 300	<100	<100	<100	<100	<100	<100	<100
РАН			-	1	1				
Benzo(a)pyrene		1.40	<3	<3	<3	<3	0.44	0.30	<3
Carcinogenic PAHs									
(as BaP TEQ) ³	40		< 0.73	<0.73	<0.73	< 0.73	0.91	<0.73	<0.73
Total PAH ³	4 000		<4.8	<4.8	<4.8	<4.8	7.29	<4.8	<4.8
Naphthalene		370	<0.3	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3
OCPs							1		ı
	ar#		-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
Aldrin	45 [#]		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	45##		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlordane	530		<2	<2	<2	<2	<2	<2	<2
DDT+DDD+DDE	3 600		<3	<3	<3	<3	<3	<3	<3
DDT		640	<1	<1	<1	<1	<1	<1	<1
Endosulfan	2 000		<5	<5	<5	<5	<5	<5	<5
Heptachlor	50		<2	<2	<2	<2	<2	<2	<2
OPPs							•		I
chlorpyrifos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
diazinon									<0.1
fenchlorphos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenols									
Phenols	240 000		NT	NT	<0.5	< 0.5	< 0.5	<0.5	<0.5
Pentachlorophenal	660		NT	NT	<1	<1	<1	<1	<1
Cresols	25 000		NT	NT	<1.5	<1.5	<1.5	<1.5	<1.5
PCBs				1	-				-
PCBs (total)	7		NT	NT	<0.5	<0.5	<0.5	<0.5	<0.5
					-0.0	.0.5	-0.5	-0.0	·0.J
Notes to table:									

Indicates contaminant above HIL D criteria Indicates contaminant above Ecological Screening Levels 1 NEPM Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater, 2013 2 NSW DEC Guidelines for the NSW Site Auditor Scheme, 2006

3 PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF. # The maximum allowable if dieldrin is not present

The maximum allowable if aldrin is not present

Results caludated as average value of sample triplicate ### Results caludated as average value of sample triplicate Total concentrations were calculated using the detection limit integer where one or more sample results used in the calculation were below the detection limit for the method.

Project 7773 / DSI Eastern Creek NSW

Sediment Results

Seament Results							
	Interim Sediment Quality Guidelines- Low ¹	Interim Sediment Quality Guidelines- High ¹	Ecological Screening / Investigation Levels ³ Commercial and Industrial				
Sample ID	mg/kg	mg/kg	mg/kg	7773-C22	7773-C23	7773-C24	7773-C25
•				SS-01	SS-02	SS-03	SS-04
Date of Sampling				25.06.2014	25.06.2014	25.06.2014	25.06.2014
Texture				Silty loam	Silty loam	Silty loam	Silty loam
Metals							
Arsenic	20.0	70.0		5.37	22.49	9.19	<2
Cadmium	1.5	10.0		<0.3	<0.3	<0.3	<0.3
Chromium (total)	80	370		15.55	36.72	16.97	10.06
Copper	65	270		19.79	19.89	22.62	27.31
Lead	50	220		16.97	30.60	26.87	24.44
Mercury	0.15	1.0		<0.2	<0.2	<0.2	<0.2
Nickel	21	52		19.79	29.07	16.97	15.81
Zinc	200.0	410.0		35.35	53.54	29.70	44.56
TRH							
TRH C6-C10	-	-	215	<35	<35	<35	<35
TRH C10-C16	-	-	170	<50	<50	<50	<50
TRH C16-C34	-	-	1 700	<100	<100	<100	<100
TRH C34-C40	-	-	3 300	<100	<100	<100	<100
РАН							
Napthalene	160	2100		<0.3	<0.3	<0.3	<0.3
Benzo(a)pyrene	430	1600		<0.3	<0.3	<0.3	<0.3
B(a)P TEQ ²	-	-		<0.73	<0.73	<0.73	<0.73
Total PAH	4000	45000		<4.8	<4.8	<4.8	<4.8

Notes to table: -

No Investigation Level Assigned Indicates contaminant above ISQG Low (trigger level) Indicates contaminant above ISQG High

¹ ANZECC Guildelines for Water Quality, 2000

² Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their Toxic Equivalency Factor (TEFs) (potency relative to B(a)P). The B(a)P TEQ (Toxic Equivalency Quantity) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF.

Total concentrations were calculated using the detection limit integer where one or more sample results used in the calculation were below the detection limit for the method.

³ NEPM Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater, 2013

Project 7773 / DSI Eastern Creek NSW

Surface Water Results

	Adjusted ANZECC 95% Species Protection ¹				
Sample ID	μg/L	7773-C22	7773-C23	7773-C24	7773-C25
		SS-01	SS-02	SS-03	SS-04
Date of Sampling		25.06.2014	25.06.2014	25.06.2014	25.06.2014
Matrix		Water	Water	Water	Water
Metals				1	
Arsenic	13	<1	<1	<1	<1
Cadmium	23.0	0.10	0.10	0.10	0.10
Chromium (total)	8.4 ^{e3}	<1	<1	<1	<1
Copper	12.6 ³	1	2	3	3
Lead	90.8 ³	<1	<1	<1	<1
Mercury	0.06 ^b	<0.1	<0.1	<0.1	<0.1
Nickel	99 ³	1	2	1	2
Zinc	72 ^{c3}	<5	<5	<5	<5
TRH				•	
TRH C10-C16		<50	<50	<50	<50
TRH C16-C34	600 ²	<100	<100	<100	<100
TRH C34-C40		<100	<100	<100	<100
РАН					
Napthalene	16	<0.1	<0.1	<0.1	<0.1
Anthracene	0.01 ^{a, b}	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.6 ^{a, b}	<0.1	<0.1	<0.1	<0.1
Fluoranthene	1.0 ^{a, b}	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	0.1 ^{a, b}	<0.1	<0.1	<0.1	<0.1
Notes to table:			•	·	

- No Investigation Level Assigned

Indicates contaminant above ANZECC Guidelines (trigger level)

¹ Trigger values adopted (level of protection: 95% of species for slightly-moderately disturbed systems), Australian and New Zealand Guidelines for Fresh and

Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000 a. In the absence of a high reliability concentration, the moderate or low reliability guideline concentration has been adopted.

b. Due to the potential for the chemical to bioaccumulate, a 99% percent protection level has been adopted.

c. Figure may not protect key species from chronic toxicity, ANZECC 2000.

d. As total concentration was reported for the analyte, the most stringent valence threshold was adopted.

e. As total Arsenic is provided in analytical results, the most stringent criteria of As III and As V has been adopted.

² Maximum of 600 µg/l for sum of TRH>C10-C40 (adapted from Netherlands Intervention Values).

³Adjusted trigger value for 'Extremely Hard' water (>400 mg/L CaCo3)

APPENDIX VII

ANALYTICAL REPORTS

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **71** of **75**

÷.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

-11 Millennium Court,

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-3

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Thomas Lobsey

Sample Log In Details

Your reference:	7773-3
No. of Samples:	6
Date Received:	27.06.2014
Date completed instructions received:	27.06.2014
Date of analysis:	27.06-04.07.2014

Report Details

Report Date:	
Method number**:	

04.07.2014 ESA-P-ORG3 ESA-P-ORG04 ESA-P-ORG05 ESA-P-ORG08 ESA-P-ORG12

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

		7773-C33	7773-C34	7773-C35	7773-C36	7773-C37	7773-C38
Lab ID	PQL (µg/L)						
	· <= (pb/ -)	Rinsate-01	Rinsate-02	VOC blank 1	VOC spike 1	VOC blank 2	VOC spike 2
РАН							
Acenaphthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Acenaphthylene	0.1	<0.1	<0.1	NT	NT	NT	NT
Anthracene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[a]anthracene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[a]pyrene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[b]fluoranthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[g,h,i]perylene	0.1	<0.1	<0.1	NT	NT	NT	NT
Benzo[k]fluoranthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Chrysene	0.1	<0.1	<0.1	NT	NT	NT	NT
Dibenzo[a,h]anthracene	0.1	<0.1	<0.1	NT	NT	NT	NT
Fluoranthene	0.1	<0.1	<0.1	NT	NT	NT	NT
Fluorene	0.1	<0.1	<0.1	NT	NT	NT	NT
Indeno(1,2,3-cd)pyrene	0.1	<0.1	<0.1	NT	NT	NT	NT
Naphthalene	0.1	<0.1	<0.1	NT	NT	NT	NT
Phenanthrene	0.1	<0.1	<0.1	NT	NT	NT	NT
Pyrene	0.1	<0.1	<0.1	NT	NT	NT	NT
p-Terphenyl-d14	surr.	63%	69%	NT	NT	NT	NT
TRH							
>C10-C16	50	<50	<50	NT	NT	NT	NT
>C16-C34	100	<100	<100	NT	NT	NT	NT
>C34-C40	100	<100	<100	NT	NT	NT	NT
BTEX							
Benzene	1	NT	NT	<1	112%	<1	112%
Toluene	1	NT	NT	<1	106%	<1	108%
Ethylbenzene	1	NT	NT	<1	108%	<1	109%
m, p- Xylene(s)	2	NT	NT	<2	108%	<2	108%
o-Xylene	1	NT	NT	<1	111%	<1	110%
Fluorobenzene	surr.	NT	NT	106%	110%	105%	110%

			Batch Blank	Batch	Batch	Batch	Batch
		1	spike 1	Matrix	Duplicate 1		Duplicate 1
Lab ID	PQL (µg/L)			spike 1	Value 1	Value 2	
		1				1	
РАН							
Acenaphthene	0.1	<0.1	97%	107%	<0.1	<0.1	ACCEPT
Acenaphthylene	0.1	<0.1	NT	107%	<0.1	<0.1	ACCEPT
Anthracene	0.1	<0.1	97%	100%	<0.1	0.1	ACCEPT
Benzo[a]anthracene	0.1	<0.1	NT	100% NT	<0.1	<0.1	ACCEPT
Benzo[a]pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[b]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[g,h,i]pervlene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[k]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Chrysene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Dibenzo[a,h]anthracene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Fluoranthene	0.1	<0.1	98%	102%	<0.1	<0.1	ACCEPT
Fluorene	0.1	<0.1	NT	10278 NT	<0.1	<0.1	ACCEPT
Indeno(1,2,3-cd)pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Naphthalene	0.1	<0.1	104%	106%	<0.1	<0.1	ACCEPT
Phenanthrene	0.1	<0.1	98%	102%	<0.1	0.1	ACCEPT
Pyrene	0.1	<0.1	97%	102%	<0.1	<0.1	ACCEPT
p-Terphenyl-d14	surr.	30.1	69%	70%	71%	70%	N/A
	5011.		0370	7070	7170	7070	1.1/1
TRH							
>C10-C16	50	<50	84%	86%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	1	<1	103%	104%	<1	<1	ACCEPT
Toluene	1	<1	98%	98%	<1	1.1	ACCEPT
Ethylbenzene	1	<1	98%	99%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	101%	99%	<2	<2	ACCEPT
o-Xylene	1	<1	99%	100%	<1	<1	ACCEPT
Fluorobenzene	surr.		103%	104%	98%	106%	N/A

			Duplicate 2 - Value 1	Duplicate 2 - Value 2	Duplicate 2
Lab ID	PQL (µg/L)				
2411					
PAH					
Acenaphthene).1	<0.1	<0.1	ACCEPT
Acenaphthylene).1	<0.1	<0.1	ACCEPT
Anthracene).1	<0.1	<0.1	ACCEPT
Benzo[a]anthracene).1	<0.1	<0.1	ACCEPT
Benzo[a]pyrene	-).1	<0.1	<0.1	ACCEPT
Benzo[b]fluoranthene	C).1	<0.1	<0.1	ACCEPT
Benzo[g,h,i]perylene	C).1	<0.1	<0.1	ACCEPT
Benzo[k]fluoranthene	C).1	<0.1	<0.1	ACCEPT
Chrysene	C).1	<0.1	<0.1	ACCEPT
Dibenzo[a,h]anthracene	C).1	<0.1	<0.1	ACCEPT
Fluoranthene	C).1	<0.1	<0.1	ACCEPT
Fluorene	C).1	<0.1	<0.1	ACCEPT
Indeno(1,2,3-cd)pyrene	C).1	<0.1	<0.1	ACCEPT
Naphthalene	0).1	<0.1	<0.1	ACCEPT
Phenanthrene	0).1	<0.1	<0.1	ACCEPT
Pyrene	0).1	<0.1	<0.1	ACCEPT
p-Terphenyl-d14	surr.		65%	63%	N/A
<u> </u>					· · · ·
TRH					
>C10-C16		50	NT	NT	NT
>C16-C34	1	00	NT	NT	NT
>C34-C40	1	00	NT	NT	NT
			Batch	Batch	Batch
			Duplicate 2 -	Duplicate 2 -	Duplicate 2
			Value 1	Value 2	-
BTEX					
Benzene		1	<1	<1	ACCEPT
Toluene	Ì	1	<1	<1	ACCEPT
Ethylbenzene		1	<1	<1	ACCEPT
m, p- Xylene(s)		2	<2	<2	ACCEPT
o-Xylene		1	<1	<1	ACCEPT
Fluorobenzene	surr.	_	116%	106%	N/A

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate

were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix

Watrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
 LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
 Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:
Results <10 times the PQL : No Limit
Results between 10-20 times the PQL : RPD must lie between 0-50%
Results >20 times the PQL : RPD must lie between 0-30%
Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG3	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
*pH test	

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

ch Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-2

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Thomas Lobsey

Sample Log In Details

Your reference:	7773-2
No. of Samples:	5
Date Received:	27.06.2014
Date completed instructions received:	27.06.2014
Date of analysis:	27.06-04.07.2014

Report Details

Report Date:	
Method number**:	

04.07.2014 ESA-P-ORG3 ESA-P-ORG04 ESA-P-ORG05 ESA-P-ORG12

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

		7773-C28	7773-C29	7773-C30	7773-C31	7773-C32
Lab ID	PQL (µg/L)					
		SW-01	SW-02	SW-03	SW-04	7773-SW- BR1
РАН						
Acenaphthene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]anthracene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]pyrene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[b]fluoranthene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[k]fluoranthene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p-Terphenyl-d14	surr.	71%	74%	73%	72%	72%
TRH						
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1 - Value 1	Duplicate 1 - Value 2	Duplicate 1
Lab ID	PQL (µg/L)						
РАН							
Acenaphthene	0.1	< 0.1	97%	107%	<0.1	<0.1	ACCEPT
Acenaphthylene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Anthracene	0.1	< 0.1	97%	100%	<0.1	0.2	ACCEPT
Benzo[a]anthracene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[a]pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[b]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[g,h,i]perylene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Benzo[k]fluoranthene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Chrysene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Dibenzo[a,h]anthracene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Fluoranthene	0.1	<0.1	98%	102%	<0.1	<0.1	ACCEPT
Fluorene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Indeno(1,2,3-cd)pyrene	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
Naphthalene	0.1	<0.1	104%	106%	<0.1	<0.1	ACCEPT
Phenanthrene	0.1	<0.1	98%	102%	<0.1	0.2	ACCEPT
Pyrene	0.1	<0.1	97%	102%	<0.1	<0.1	ACCEPT
p-Terphenyl-d14	surr.		69%	70%	71%	70%	N/A
TRH							
>C10-C16	50	<50	84%	86%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate

were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix

Watrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
 LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
 Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:
Results <10 times the PQL : No Limit
Results between 10-20 times the PQL : RPD must lie between 0-50%
Results >20 times the PQL : RPD must lie between 0-30%
Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG3	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
*pH test	

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

A division of A. D. Envirotech Australia Pty Ltd

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-1

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Thomas Lobsey

Sample Log In Details

Your reference:	7773-1
No. of Samples:	27
Date Received:	27.06.2014
Date completed instructions received:	27.06.2014
Date of analysis:	27.06-04.07.2014

Report Details

Report Date: Method number**: 04.07.2014 ESA-MP-01 ESA-P-0RG3 ESA-P-0RG07 ESA-P-0RG08 ESA-P-0RG09 ESA-P-0RG11 ESA-P-0RG12

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		7773-C1	7773-C2	7773-C3	7773-C4	7773-C5
Lab ID	PQL (mg/kg)	7773-BH-01A	7773-BH-02A	7773-BH-03A	7773-BH-04A	7773-BH-054
Sample Name						
РАН		<0.3				
Acenaphthene			<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	0.5
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	0.6
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	0.9
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	0.5
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	0.7
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	0.5
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	0.7
p-Terphenyl-d14	surr.	89%	87%	85%	86%	85%
OCPs						
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ТСМХ	surr.	105%	106%	104%	108%	109%
000-						
OPPs shlorpurifos	0.1	<0.1	-0.1	<0.1	<0.1	<0.1
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1	0.3
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

		7773-C1	7773-C2	7773-C3	7773-C4	7773-C5
Lab ID	PQL (mg/kg)					
		7773-BH-01A	7773-BH-02A	7773-BH-03A	7773-BH-04A	7773-BH-05A
Sample Name						
TRH						
>C6-C10	35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	140
>C34-C40	100	<100	<100	<100	<100	160
Metals						
Arsenic	2	10	20	11	14	10
Beryllium	5	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	31	23	19	18	13
Cobalt	5	NT	NT	NT	NT	NT
Copper	5	35	13	26	23	72
Lead	10	37	21	24	28	160
Manganese	5	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	0.3
Nickel	10	34	12	16	19	<10
Selenium	2	NT	NT	NT	NT	NT
Zinc	5	100	27	48	39	240
Moisture	%	26%	8%	30%	22%	21%

		7773-C6	7773-C7	7773-C8	7773-C9	7773-C10
lah ID						
Lab ID	PQL (mg/kg)	7773-BH-06A	7773-BH-07A	7773-BH-08A	7773-BH-09A	7773-BH-10A
Sample Name						
PAH						
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	< 0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	87%	93%	85%	88%	84%
OCPs						
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ТСМХ	surr.	107%	114%	104%	108%	104%
OPPs		10.1	10.1	10.1	10.1	
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	0.3	<0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

		7773-C6	7773-C7	7773-C8	7773-C9	7773-C10
Lab ID	PQL (mg/kg)					
		7773-BH-06A	7773-BH-07A	7773-BH-08A	7773-BH-09A	7773-BH-10A
Sample Name						
TRH						
>C6-C10	35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100
Metals						
Arsenic	2	9.1	12	3.8	8.1	8.1
Beryllium	5	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	25	140	20	23	14
Cobalt	5	NT	NT	NT	NT	NT
Copper	5	67	30	15	15	18
Lead	10	38	27	28	29	31
Manganese	5	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	28	130	18	15	16
Selenium	2	NT	NT	NT	NT	NT
Zinc	5	56	53	39	36	42
Moisture	%	21%	30%	11%	15%	17%

		7773-C11	7773-C12	7773-C13	7773-C14	7773-C15
I ah ID	DOL (mg/kg)					
Lab ID	PQL (mg/kg)	7773-BH-11A	7773-BH-12A	7773-BH-13A	7773-BH-14A	7773-BH-15A
Sample Name						
РАН						
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	92%	84%	84%	91%	86%
OCPs						
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ТСМХ	surr.	112%	102%	104%	112%	105%
OPPs						
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

		7773-C11	7773-C12	7773-C13	7773-C14	7773-C15
Lab ID	PQL (mg/kg)					
		7773-BH-11A	7773-BH-12A	7773-BH-13A	7773-BH-14A	7773-BH-15A
Sample Name						
TRH						
>C6-C10	35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100
Metals						
Arsenic	2	2.4	8.3	<2	6.5	11
Beryllium	5	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	18	14	20	17	13
Cobalt	5	NT	NT	NT	NT	NT
Copper	5	14	19	48	10	14
Lead	10	21	32	23	27	25
Manganese	5	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	<10	12	19	<10	<10
Selenium	2	NT	NT	NT	NT	NT
Zinc	5	27	36	47	21	38
Moisture	%	16%	17%	19%	16%	15%

	7773-C16	7773-C17	7773-C18	7773-C19	7773-C20	7773-C21
POL(mg/kg)						
PQL (IIIg/kg)	7773-BH-16A	SP1-01A	SP1-02A	SP1-03A	SP2-01A	SP2-02A
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3
0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	0.4	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	0.4	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	1.2	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	0.3	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
0.3	<0.3	<0.3	<0.3	1.0	< 0.3	<0.3
surr.	85%	89%	85%	81%	86%	68%
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
						<0.1
						<0.1
		-	-	-	-	<0.1
						<0.2
						<0.2
						<0.1
						<0.2
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	-		-		-	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1						<0.1
surr.	104%	109%	105%	101%	106%	96%
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		<0.1	<0.1	<0.1	<0.1	<0.1
		<0.1	<0.1	<0.1	<0.1	<0.1
0.1	<0.1	<0.1	NU.1	<0.1	<0.1	\U.1
	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	PQL (mg/kg) 7773-BH-16A 0.3 <0.3	PQL (mg/kg) 7773-BH-16A SP1-01A 0.3 <0.3	PQL (mg/kg) 7773-BH-16A SP1-01A SP1-02A 0.3 <0.3	POL (mg/kg) 7773-BH-16A SP1-01A SP1-02A SP1-03A 0.3 <0.3	PQL (mg/kg) 7773-BH-16A SP1-01A SP1-02A SP1-03A SP2-01A 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.3 -0.3 -0.3 -0.3 -0.3 -0.3

		7773-C16	7773-C17	7773-C18	7773-C19	7773-C20	7773-C21
Lab ID	PQL (mg/kg)						
		7773-BH-16A	SP1-01A	SP1-02A	SP1-03A	SP2-01A	SP2-02A
Sample Name							
TRH							
>C6-C10	35	<35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100	<100
Metals							
Arsenic	2	25	4.3	3.9	5.0	3.6	9.2
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3
Chromium	5	21	16	19	36	29	21
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	21	32	86	38	24	14
Lead	10	28	29	28	27	21	19
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	27	17	20	46	20	13
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	40	45	51	61	78	29
Moisture	%	14%	24%	20%	14%	9%	8%

		7773-C22	7773-C23	7773-C24	7773-C25	7773-C26	7773-C27
		1115 622	7775 625	7775 C24	1115 625	7775 620	7775 627
Lab ID	PQL (mg/kg)						
		SS-01	SS-02	SS-03	SS-04	7773-BR1	7773-BR2
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3 <0.3	<0.3 <0.3	<0.3 <0.3	<0.3	<0.3 <0.3	< 0.3
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3 <0.3	< 0.3	<0.3 <0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	69%	68%	66%	68%	67%	68%
OCPs							
aldrin	0.1	NT	NT	NT	NT	<0.1	<0.1
a-BHC	0.1	NT	NT	NT	NT	<0.1	<0.1
b-BHC	0.1	NT	NT	NT	NT	<0.1	<0.1
d-BHC	0.1	NT	NT	NT	NT	<0.1	<0.1
g-BHC (lindane)	0.1	NT	NT	NT	NT	<0.1	<0.1
cis-chlordane	0.1	NT	NT	NT	NT	<0.1	<0.1
trans-chlordane	0.1	NT NT	NT NT	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1
4,4'-DDD 4,4'-DDE	0.1	NT	NT	NT	NT	<0.1	<0.1
4,4'-DDE 4,4'-DDT	0.1	NT	NT	NT	NT	<0.1	<0.1
dieldrin	0.1	NT	NT	NT	NT	<0.1	<0.1
endosulfan I	0.1	NT	NT	NT	NT	<0.1	<0.1
endosulfan II	0.2	NT	NT	NT	NT	<0.2	<0.2
endosulfan sulfate	0.1	NT	NT	NT	NT	<0.1	<0.1
endrin	0.2	NT	NT	NT	NT	<0.2	<0.2
endrin aldehyde	0.1	NT	NT	NT	NT	<0.1	<0.1
endrin ketone	0.1	NT	NT	NT	NT	<0.1	<0.1
heptachlor	0.1	NT	NT	NT	NT	<0.1	<0.1
heptachlor epoxide	0.1	NT	NT	NT	NT	<0.1	<0.1
hexachlorobenzene	0.1	NT	NT	NT	NT	<0.1	<0.1
methoxychlor	0.1	NT	NT	NT	NT	<0.1	<0.1
тсмх	surr.	NT	NT	NT	NT	95%	96%
	_						
OPPs							-
chlorpyrifos	0.1	NT	NT	NT	NT	<0.1	<0.1
chlorpyrifos methyl	0.1	NT	NT	NT	NT	<0.1	<0.1
diazinon	0.1	NT	NT	NT	NT	<0.1	<0.1
fenchlorphos	0.1	NT	NT	NT	NT	<0.1	<0.1
methyl parathion prophos	0.1	NT	NT	NT NT	NT NT	<0.1	<0.1 <0.1
propnos tributylphosphorotrithioite	0.1	NT	NT			<0.1	
ci ibutyiphosphorotritmoite	0.1	NT	NT	NT	NT	<0.1	<0.1

		7773-C22	7773-C23	7773-C24	7773-C25	7773-C26	7773-C27
Lab ID	PQL (mg/kg)						
		SS-01	SS-02	SS-03	SS-04	7773-BR1	7773-BR2
Sample Name							
TRH							
>C6-C10	35	<35	<35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100	<100
Metals							
Arsenic	2	5.4	22	9.2	<2	7.4	9.7
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	16	37	17	10	30	31
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	20	20	23	27	16	21
Lead	10	17	31	27	24	38	26
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	20	29	17	16	25	32
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	35	54	30	45	47	39
Moisture	%	29%	35%	29%	30%	11%	15%

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
.ab ID	PQL (mg/kg)						
ample Name							
РАН							
Acenaphthene	0.3	<0.3	106%	108%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	108%	110%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	112%	113%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	108%	110%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	110%	112%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	107%	108%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	<0.3	84%	86%	87%	90%	N/A
OCPs							
aldrin	0.1	<0.1	119%	121%	<0.1	0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	92%	105%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	108%	110%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ГСМХ	surr.	<0.1	101%	102%	106%	105%	N/A
OPPs							
chlorpyrifos	0.1	<0.1	108%	108%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	100%	103%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
orophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	< 0.1	NT	NT	< 0.1	< 0.1	ACCEPT

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Lab ID	PQL (mg/kg)						
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	106%	109%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
Metals							
Arsenic	2	<2	100%	96%	20	16	ACCEPT
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	103%	103%	<0.3	<0.3	ACCEPT
Chromium	5	<5	100%	103%	23	15	ACCEPT
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	<5	98%	109%	13	11	ACCEPT
Lead	10	<10	105%	104%	21	15	ACCEPT
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	96%	97%	<0.2	<0.2	ACCEPT
Nickel	10	<10	99%	119%	12	<10	ACCEPT
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	<5	94%	90%	27	21	ACCEPT
Moisture	%						

		Duplicate 2-	Duplicate 2-	Duplicate 2
		Value 1	Value 2	
Lab ID	PQL (mg/kg)			
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	
Prenanthrene	0.3	<0.3	<0.3	ACCEPT ACCEPT
p-Terphenyl-d14		<0.3	<0.3 92%	N/A
p-rerpiteliyi-014	surr.	80%	92%	N/A
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	107%	112%	N/A
OPPs shlorpyrifes	0.1	-0.1	-0.1	ACCEDT
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	< 0.1	< 0.1	ACCEPT

		Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Lab ID	PQL (mg/kg)			
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
Metals				
Arsenic	2	2.4	4.5	ACCEPT
Beryllium	5	NT	NT	NT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	18	19	ACCEPT
Cobalt	5	NT	NT	NT
Copper	5	14	13	ACCEPT
Lead	10	21	21	ACCEPT
Manganese	5	NT	NT	NT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Selenium	2	NT	NT	NT
Zinc	5	27	27	ACCEPT
Moisture	%			

		Blank 2	Blank spike 2	Matrix spike 2	Duplicate 3 - Value 1	Duplicate 3- Value 2	Duplicate 3
Lab ID	PQL (mg/kg)						
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	82%	82%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	84%	84%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	86%	87%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	82%	82%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	85%	84%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	83%	83%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	<0.3	61%	61%	69%	72%	N/A
0.00							
OCPs aldrin	0.1	<0.1	93%	91%	<0.1	<0.1	ACCEPT
а-ВНС	0.1	<0.1	93%	91% NT	<0.1	<0.1	ACCEPT
а-внс b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	76%	73%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	75%	68%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.	<0.1	80%	79%	92%	98%	N/A
DPPs chlorpyrifos	0.1	<0.1	89%	90%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	90%	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	83%	83%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	83%	83% NT	<0.1	<0.1	ACCEPT
methyl parathion prophos	0.1	<0.1	NT NT	NT NT	<0.1	<0.1	ACCEPT ACCEPT
	0.1	<0.1			<0.1	<0.1	
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Blank 2	Blank spike 2	Matrix spike 2	Duplicate 3 - Value 1	Duplicate 3- Value 2	Duplicate 3
Lab ID	PQL (mg/kg)						
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	115%	117%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
Metals							
Arsenic	2	<2	94%	100%	5.4	11	ACCEPT
Beryllium	5	NT	NT	NT	NT	NT	NT
Cadmium	0.3	<0.3	105%	103%	<0.3	<0.3	ACCEPT
Chromium	5	<5	101%	123%	16	40	ACCEPT
Cobalt	5	NT	NT	NT	NT	NT	NT
Copper	5	<5	100%	110%	20	25	ACCEPT
Lead	10	<10	103%	121%	17	23	ACCEPT
Manganese	5	NT	NT	NT	NT	NT	NT
Mercury	0.2	<0.2	101%	96%	<0.2	<0.2	ACCEPT
Nickel	10	<10	101%	119%	20	34	ACCEPT
Selenium	2	NT	NT	NT	NT	NT	NT
Zinc	5	<5	95%	101%	35	51	ACCEPT
Moisture	%		1				

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:
Results <10 times the PQL : No Limit
Results between 10-20 times the PQL : RPD must lie between 0-50%
Results >20 times the PQL : RPD must lie between 0-30%
Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW/ PMS Test Method T 276 Foreign materials content of recycled crushed constate

T276 NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete

*Texture Assessment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"

*ElectroConductivity testing with Aqua CPA Conduct./pH meter

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

Environmental and OH&S Laboratory A.C.N. 093 452 950

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 7773-4

Customer: A. D. Envirotech Australia Pty. Ltd. Attention: Evan Webb

Sample Log In Details

7773-4
4
21.07.2014
21.07.2014
21.07.2014

Report Details

Report Date: Method number**: 21.07.2014 *pH test *ElectroConductivity testing with Aqua CPA Conduct./pH meter

Results Authorised By:

Ao jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		7773-C39	7773-C40	7773-C41	7773-C42
Lab ID	PQL (µg/L)				
		7773-SW-01A	7773-SW-01B	7773-SW-02A	7773-SW-02B
рН		7.98	7.21	7.48	7.50
EC	[dS/m]	2.67	4.84	2.60	2.69

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate

were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix

Watrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
 LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
 Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:
Results <10 times the PQL : No Limit
Results between 10-20 times the PQL : RPD must lie between 0-50%
Results >20 times the PQL : RPD must lie between 0-30%
Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG3	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
*pH test	
*ElectroConducti	ivity testing with Aqua CPA Conduct./pH meter

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

P Edmunds

Report Client Reference Received Date **423371-S** 7773 Jun 27, 2014

Client Sample ID			7773-SP1	7773-SP1-01A	7773-SP1-02A	7773-SP1-03A
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-Jn24360	S14-Jn24365	S14-Jn24366	S14-Jn24367
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Linit		Not i rovided	Not i rovided	Not i Tovided
Total Recoverable Hydrocarbons - 1999 NEPM Fr	_	Unit				
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	< 20	-	-	-
TRH C15-C28	50	mg/kg	< 50	-	-	-
TRH C29-C36	50	mg/kg	< 50	-	-	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fr		1				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	< 100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (lower bound)*	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound)*	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound)*	0.5	mg/kg	1.2	-	-	-
2-Fluorobiphenyl (surr.)	1	%	93	-	-	-
p-Terphenyl-d14 (surr.)	1	%	113	-	-	-

Client Sample ID			7773-SP1	7773-SP1-01A	7773-SP1-02A	7773-SP1-03A
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-Jn24360	S14-Jn24365	S14-Jn24366	S14-Jn24367
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
•			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Dibutylchlorendate (surr.)	1	%	120	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	95	-	-	-
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	-	78	119	127
Speciated Phenols						
2.4-Dichlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2.4.6-Trichlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Phenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
3&4-Methylphenol (m&p-Cresol)	1	mg/kg	-	< 1	< 1	< 1
2-Chlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Nitrophenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Pentachlorophenol	1	mg/kg	-	< 1	< 1	< 1
Phenol-d5 (surr.)	1	%	-	76	96	88

Client Sample ID			7773-SP1	7773-SP1-01A	7773-SP1-02A	7773-SP1-03A	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S14-Jn24360	S14-Jn24365	S14-Jn24366	S14-Jn24367 Not Provided	
Date Sampled			Not Provided	Not Provided	Not Provided		
Test/Reference	LOR	Unit					
Organophosphorus Pesticides (OP)	Loit	Onit					
Chlorpyrifos	0.5	mg/kg	< 0.5	_	_		
Coumaphos	0.5	mg/kg	< 0.5	_	-	_	
Demeton (total)	1	mg/kg	< 1	-	-	-	
Diazinon	0.5	mg/kg	< 0.5	-	-	-	
Dichlorvos	0.5	mg/kg	< 0.5	-	-	-	
Dimethoate	0.5	mg/kg	< 0.5	-	-	-	
Disulfoton	0.5	mg/kg	< 0.5	-	-	-	
Ethoprop	0.5	mg/kg	< 0.5	-	-	-	
Fenitrothion	0.5	mg/kg	< 0.5	-	-	-	
Fensulfothion	0.5	mg/kg	< 0.5	-	-	-	
Fenthion	0.5	mg/kg	< 0.5	-	-	-	
Methyl azinphos	0.5	mg/kg	< 0.5	-	_	-	
Malathion	0.5	mg/kg	< 0.5	-	-	-	
Methyl parathion	0.5	mg/kg	< 0.5	-	-	-	
Mevinphos	0.5	mg/kg	< 0.5	-	-	-	
Monocrotophos	10	mg/kg	< 10	-	-	-	
Parathion	0.5	mg/kg	< 0.5	-	-	-	
Phorate	0.5	mg/kg	< 0.5	-	-	-	
Profenofos	0.5	mg/kg	< 0.5	-	-	-	
Prothiofos	0.5	mg/kg	< 0.5	-	-	-	
Ronnel	0.5	mg/kg	< 0.5	-	-	-	
Stirophos	0.5	mg/kg	< 0.5	-	-	-	
Trichloronate	0.5	mg/kg	< 0.5	-	-	-	
Triphenylphosphate (surr.)	1	%	84	-	-	-	
Heavy Metals	·						
Arsenic	2	mg/kg	9.4	-	-	-	
Cadmium	0.4	mg/kg	< 0.4	-	-	-	
Chromium	5	mg/kg	23	-	-	-	
Copper	5	mg/kg	21	-	-	-	
Lead	5	mg/kg	13	-	-	-	
Mercury	0.05	mg/kg	< 0.05	-	-	-	
Nickel	5	mg/kg	23	-	-	-	
Zinc	5	mg/kg	42	-	-	-	
	·						
% Moisture	0.1	%	13	24	11	13	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			7773-SP2-01A Soil S14-Jn24368 Not Provided	7773-SP2-02A Soil S14-Jn24369 Not Provided
Test/Reference	LOR	Unit		
Polychlorinated Biphenyls (PCB)				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID Sample Matrix Eurofins mgt Sample No.			7773-SP2-01A Soil S14-Jn24368	7773-SP2-02A Soil S14-Jn24369
Date Sampled			Not Provided	Not Provided
•			Not Provided	Not Flovided
Test/Reference	LOR	Unit		
Polychlorinated Biphenyls (PCB)				
Total PCB	0.5	mg/kg	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	120	119
Speciated Phenols				
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5
2.4.5-Trichlorophenol	0.5	mg/kg	< 0.5	< 0.5
2.4.6-Trichlorophenol	0.5	mg/kg	< 0.5	< 0.5
Phenol	0.5	mg/kg	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.5	mg/kg	< 0.5	< 0.5
3&4-Methylphenol (m&p-Cresol)	1	mg/kg	< 1	< 1
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5
2-Nitrophenol	0.5	mg/kg	< 0.5	< 0.5
4-Chloro-3-methylphenol	0.5	mg/kg	< 0.5	< 0.5
Pentachlorophenol	1	mg/kg	< 1	< 1
Phenol-d5 (surr.)	1	%	85	91
% Moisture	0.1	%	7.9	7.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jul 01, 2014	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 01, 2014	14 Day
- Method: LM-LTM-ORG2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 01, 2014	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Jun 30, 2014	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Jul 01, 2014	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Speciated Phenols	Sydney	Jul 01, 2014	14 Day
- Method: E008 Speciated Phenols			
Organophosphorus Pesticides (OP)	Sydney	Jul 01, 2014	14 Day
- Method: E014 Organophosphorus Pesticides (OP)			
Metals M8	Sydney	Jun 30, 2014	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
% Moisture	Sydney	Jun 30, 2014	28 Day
- Method: E005 Moisture Content			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	Company Name:AD Envirotech Aust Pty LtdAddress:Unit 4/ 10-11 Millenium CourtSilverwaterNSW 2128Client Job No.:7773						erder eport hone ax:	t #:			9400	7711 0097			Received: Jun 27, 2014 4:30 PM Due: Jul 7, 2014 Priority: 5 Day Contact Name: D. Jones			
	Sample Detail						Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated Phenols	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons		Euronns mgr	Client Manager: Mary Makarios		
														-				
		Site # 1254 & 14	1271					<u>ا</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>					-				
Sydney Labora					X	Х	Х	Х	Х	Х	Х	Х	Х	-				
Brisbane Labo		ite # 20794						لـــــا	──					-				
External Labor	atory Sample Date	Sampling Time	Matrix	LAB ID														
7773-SP1	Not Provided		Soil	S14-Jn24360	Х	Х	Х	Х				Х	Х					
7773-SW-01	Not Provided		Water	S14-Jn24361					Х]				
7773-SW-02	Not Provided		Water	S14-Jn24362					Х]				
7773-SW-03	Not Provided		Water	S14-Jn24363					Х									
7773-SW-04	Not Provided		Water	S14-Jn24364					Х									
7773-SP1-01A	Not Provided		Soil	S14-Jn24365	Х					Х	Х							
7773-SP1-02A	Not Provided		Soil	S14-Jn24366	Х					Х	Х							
7773-SP1-03A	Not Provided		Soil	S14-Jn24367	Х				L	Х	Х			-				
7773-SP2-01A			Soil	S14-Jn24368	Х			<u>ا</u> ا		Х	Х			-				
7773-SP2-02A	Not Provided		Soil	S14-Jn24369	Х					Х	Х]				

3-t Oa Ph

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: AD Envirotech Aust Pty Ltd Address: Unit 4/ 10-11 Millenium Court Silverwater NSW 2128 Client Job No.: 7773						R P	order epor hone ax:	t #:		423371 02 9400 7711 02 9401 0097				Receiv Due: Priority Contac		Jun 27, 2014 4:30 PM Jul 7, 2014 5 Day D. Jones	
														Eu	ırofins mg	t Client Manager: Mary Makarios	÷
Sample Detail							Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated Phenols	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons				
	ere analysis is																
		Site # 1254 & 14	271		V		×	×	×		~	~	~				
	Sydney Laboratory - NATA Site # 18217				X	X	Х	X	X	X	Х	Х	Х				
Brisbane Laboratory - NATA Site # 20794 External Laboratory																	
7773-SW-BR1	Not Provided		Water	S14-Jn24370					X								
7773- RINSATE-01	Not Provided		Water	S14-Jn24371					x								

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/l: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100mL: Most Probable Number of organisms per 100 millilitres	

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	ł				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank				1	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	iiig/kg	100	100	1 433	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
		1			
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		1		1	
Organochlorine Pesticides				_	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acc	eptance imits	Pass Limits	Qualifying Code
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank						
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	mg/kg	< 0.5		0.5	Pass	
Aroclor-1232	mg/kg	< 0.5		0.5	Pass	
Aroclor-1242	mg/kg	< 0.5		0.5	Pass	
Aroclor-1248	mg/kg	< 0.5		0.5	Pass	
Aroclor-1254	mg/kg	< 0.5		0.5	Pass	
Aroclor-1260	mg/kg	< 0.5		0.5	Pass	
Total PCB	mg/kg	< 0.5		0.5	Pass	
Method Blank	1 5 5					
Speciated Phenols						
2.4-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5		0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4.6-Trichlorophenol	mg/kg	< 0.5		0.5	Pass	
Phenol	mg/kg	< 0.5		0.5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.5		0.5	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 1		1	Pass	
2-Chlorophenol	mg/kg	< 0.5		0.5	Pass	
2-Nitrophenol	mg/kg	< 0.5		0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 0.5		0.5	Pass	
Pentachlorophenol		< 0.5		1	Pass	
Method Blank	mg/kg			1	F d 5 5	
		1 1				
Organophosphorus Pesticides (OP)	~~~~//ca	.05		0.5	Pass	
Chlorpyrifos	mg/kg	< 0.5				
Coumaphos	mg/kg	< 0.5		0.5	Pass	
Demeton (total)	mg/kg	< 1		1	Pass	
Diazinon	mg/kg	< 0.5		0.5	Pass	
Dichlorvos	mg/kg	< 0.5		0.5	Pass	
Dimethoate	mg/kg	< 0.5		0.5	Pass	
Disulfoton	mg/kg	< 0.5		0.5	Pass	
Ethoprop	mg/kg	< 0.5		0.5	Pass	
Fenitrothion	mg/kg	< 0.5		0.5	Pass	
Fensulfothion	mg/kg	< 0.5		0.5	Pass	
Fenthion	mg/kg	< 0.5		0.5	Pass	
Methyl azinphos	mg/kg	< 0.5		0.5	Pass	
Malathion	mg/kg	< 0.5		0.5	Pass	
Methyl parathion	mg/kg	< 0.5		0.5	Pass	
Mevinphos	mg/kg	< 0.5		0.5	Pass	
Monocrotophos	mg/kg	< 10		10	Pass	
Parathion	mg/kg	< 0.5		0.5	Pass	
Phorate	mg/kg	< 0.5		0.5	Pass	
Profenofos	mg/kg	< 0.5		0.5	Pass	
Prothiofos	mg/kg	< 0.5		0.5	Pass	
Ronnel	mg/kg	< 0.5		0.5	Pass	
Stirophos	mg/kg	< 0.5		0.5	Pass	
Trichloronate	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	

🛟 eurofins

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery			· · ·		
Total Recoverable Hydrocarbons - 1999 NEPM Fractio	ns				
TRH C6-C9	%	102	70-130	Pass	
TRH C10-C14	%	76	70-130	Pass	
LCS - % Recovery	4				
Total Recoverable Hydrocarbons - 2013 NEPM Fractio	ns				
Naphthalene	%	125	70-130	Pass	
TRH C6-C10	%	95	70-130	Pass	
TRH >C10-C16	%	80	70-130	Pass	
LCS - % Recovery				1 433	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	107	70-130	Pass	
Acenaphthylene	%	97	70-130	Pass	
Anthracene	%	97 116	70-130	Pass	
Benz(a)anthracene		82	70-130	Pass	
	%				
Benzo(a)pyrene	%	89	70-130	Pass	
Benzo(b&j)fluoranthene	%	95	70-130	Pass	
Benzo(g.h.i)perylene	%	97	70-130	Pass	
Benzo(k)fluoranthene	%	108	70-130	Pass	
Chrysene	%	116	70-130	Pass	
Dibenz(a.h)anthracene	%	95	70-130	Pass	
Fluoranthene	%	106	70-130	Pass	
Fluorene	%	100	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	95	70-130	Pass	
Naphthalene	%	103	70-130	Pass	
Phenanthrene	%	88	70-130	Pass	
Pyrene	%	105	70-130	Pass	
LCS - % Recovery		, I		-	
Organochlorine Pesticides					
Chlordanes - Total	%	97	70-130	Pass	
4.4'-DDD	%	103	70-130	Pass	
4.4'-DDE	%	105	70-130	Pass	
4.4'-DDT	%	94	70-130	Pass	
a-BHC	%	103	70-130	Pass	
Aldrin	%	99	70-130	Pass	
b-BHC	%	98	70-130	Pass	
d-BHC	%	100	70-130	Pass	
Dieldrin	%	100	70-130	Pass	
Endosulfan I	%	98	70-130	Pass	
Endosulfan II	%	98	70-130	Pass	
Endosulfan sulphate	%	96	70-130	Pass	
Endrin	%	98	70-130	Pass	
Endrin aldehyde	%	102	70-130	Pass	
Endrin ketone	%	91	70-130	Pass	
g-BHC (Lindane)	%	97	70-130	Pass	
Heptachlor	%	96	70-130	Pass	
Heptachlor epoxide	%	102	70-130	Pass	
Hexachlorobenzene	%	127	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Methoxychlor			%	94		70-130	Pass	
LCS - % Recovery				4				
Polychlorinated Biphenyls (PCB)								
Aroclor-1260			%	89		70-130	Pass	
LCS - % Recovery						•		
Speciated Phenols								
2.4-Dimethylphenol			%	77		30-130	Pass	
2.4.5-Trichlorophenol			%	95		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	100		30-130	Pass	
2-Chlorophenol			%	100		30-130	Pass	
LCS - % Recovery				_				
Organophosphorus Pesticides (OF	?)							
Chlorpyrifos			%	116		70-130	Pass	
Coumaphos			%	98		70-130	Pass	
Dichlorvos			%	75		70-130	Pass	
Dimethoate			%	96		70-130	Pass	
Disulfoton			%	116		70-130	Pass	
Ethoprop			%	118		70-130	Pass	
Fensulfothion			%	128		70-130	Pass	
Fenthion			%	118		70-130	Pass	
Methyl azinphos			%	91		70-130	Pass	
Malathion			%	89		70-130	Pass	
Methyl parathion			%	107		70-130	Pass	
Mevinphos			%	98		70-130	Pass	
Monocrotophos			%	97		70-130	Pass	
Parathion			%	81		70-130	Pass	
Phorate			%	117		70-130	Pass	
Prothiofos			%	128		70-130	Pass	
Ronnel			%	116		70-130	Pass	
Stirophos			%	128		70-130	Pass	
Trichloronate			%	84		70-130	Pass	
LCS - % Recovery				1	1	1		
Heavy Metals								
Arsenic			%	96		70-130	Pass	
Cadmium			%	95		70-130	Pass	
Chromium			%	96		70-130	Pass	
Copper			%	93		70-130	Pass	
Lead			%	99		70-130	Pass	
Mercury			%	97		70-130	Pass	
Nickel			%	95		70-130	Pass	
Zinc			%	102		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					· · · · ·			
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S14-Jn25737	NCP	%	90		70-130	Pass	
TRH C10-C14	S14-Jn25737	NCP	%	81		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	S14-Jn25737	NCP	%	122		70-130	Pass	
TRH C6-C10	S14-Jn25737	NCP	%	82		70-130	Pass	
TRH >C10-C16	S14-Jn25737	NCP	%	84		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptanc Limits	e Pass Limits	Qualifying Code
4.4'-DDD	S14-JI00343	NCP	%	123	70-130	Pass	
4.4'-DDE	S14-Jn25737	NCP	%	129	70-130	Pass	
4.4'-DDT	S14-JI00343	NCP	%	91	70-130	Pass	
a-BHC	S14-JI00343	NCP	%	113	70-130	Pass	
Aldrin	S14-JI00343	NCP	%	110	70-130	Pass	
b-BHC	S14-JI00343	NCP	%	115	70-130	Pass	
d-BHC	S14-JI00343	NCP	%	116	70-130	Pass	
Dieldrin	S14-JI00343	NCP	%	111	70-130	Pass	
Endosulfan I	S14-JI00343	NCP	%	104	70-130	Pass	
Endosulfan II	S14-JI00343	NCP	%	108	70-130	Pass	
Endosulfan sulphate	S14-JI00343	NCP	%	121	70-130	Pass	
Endrin	S14-JI00343	NCP	%	105	70-130	Pass	
Endrin aldehyde	S14-JI00343	NCP	%	112	70-130	Pass	
Endrin ketone	S14-JI00343	NCP	%	113	70-130	Pass	
g-BHC (Lindane)	S14-JI00343	NCP	%	114	70-130	Pass	
Heptachlor	S14-JI00343	NCP	%	100	70-130	Pass	
Heptachlor epoxide	S14-JI00343	NCP	%	113	70-130	Pass	
Hexachlorobenzene	S14-JI00343	NCP	%	128	70-130	Pass	
Methoxychlor	S14-JI00343	NCP	%	96	70-130	Pass	
Spike - % Recovery						,	
Heavy Metals				Result 1			
Arsenic	S14-Jn25736	NCP	%	93	70-130	Pass	
Cadmium	S14-Jn25736	NCP	%	99	70-130	Pass	
Chromium	S14-Jn25736	NCP	%	103	70-130	Pass	
Copper	S14-Jn25736	NCP	%	92	70-130	Pass	
Lead	S14-Jn25736	NCP	%	100	70-130	Pass	
Mercury	S14-Jn25736	NCP	%	113	70-130	Pass	
Nickel	S14-Jn25736	NCP	%	96	70-130	Pass	
Zinc	S14-Jn25736	NCP	%	92	70-130	Pass	
Spike - % Recovery	014 0120700		/0	02	10100	1 400	
Polychlorinated Biphenyls (PCB)				Result 1			
Aroclor-1260	S14-JI00343	NCP	%	86	70-130	Pass	
Spike - % Recovery	014 0100040		70	00	70130	1 433	
Polycyclic Aromatic Hydrocarbons				Result 1		1	
Acenaphthene	S14-Jn24366	CP	%	92	70-130	Pass	
Acenaphthylene	S14-Jn24366	CP	%	92	70-130	Pass	
Anthracene	S14-Jn24366	CP	%	98	70-130	Pass	
Benz(a)anthracene	S14-Jn24366	CP	%	90	70-130	Pass	
	S14-Jn24366	CP	%	86	70-130		
Benzo(a)pyrene Benzo(b&j)fluoranthene	S14-Jn24366	CP	%	79	70-130	Pass	
	S14-Jn24366	CP	%	87	70-130	Pass Pass	
Benzo(g.h.i)perylene		CP	%	97			
Benzo(k)fluoranthene	S14-Jn24366	CP	%		70-130	Pass	
Chrysene	S14-Jn24366			100	70-130	Pass	
Dibenz(a.h)anthracene Fluoranthene	S14-Jn24366	CP CP	% %	89	70-130	Pass	
	S14-Jn24366	CP	%	97		Pass	
Fluorene	S14-Jn24366	CP	%	93	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S14-Jn24366			87	70-130	Pass	
Naphthalene	S14-Jn24366	CP	%	94	70-130	Pass	
Phenanthrene	S14-Jn24366	CP	%	96	70-130	Pass	
Pyrene	S14-Jn24366	CP	%	99	70-130	Pass	
Spike - % Recovery				D			
Speciated Phenols	044 1 0 1	0.5	~ /	Result 1		+	
2.4-Dimethylphenol	S14-Jn24366	CP	%	76	30-130	Pass	
2.4.5-Trichlorophenol	S14-Jn24366	CP	%	89	30-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
3&4-Methylphenol (m&p-Cresol)	S14-Jn24366	CP	%	95			30-130	Pass	
2-Chlorophenol	S14-Jn24366	CP	%	93			30-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		Couloo		_			Linito	Linito	0000
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S14-Jn25736	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S14-Jn24646	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S14-Jn24646	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S14-Jn24646	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S14-Jn25736	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S14-Jn25736	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S14-Jn25736	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S14-Jn24646	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S14-Jn24646	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S14-Jn24646	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S14-JI00343	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S14-JI00343	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S14-JI00343	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S14-JI00343	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S14-Jn25735	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S14-Jn25735	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S14-Jn25735	NCP	mg/kg	8.2	7.3	11	30%	Pass	
Copper	S14-Jn25735	NCP	mg/kg	72	71	2.0	30%	Pass	
Lead	S14-Jn25735	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S14-Jn25735	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S14-Jn25735	NCP	mg/kg	64	71	10	30%	Pass	
Zinc	S14-Jn25735	NCP	mg/kg	44	49	11	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon	S			Result 1	Result 2	RPD			
Acenaphthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S14-Jn24365	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S14-JI00343	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Speciated Phenols				Result 1	Result 2	RPD			
2.4-Dichlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dimethylphenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.6-Trichlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S14-Jn24365	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2-Chlorophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Nitrophenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S14-Jn24365	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pentachlorophenol	S14-Jn24365	CP	mg/kg	< 1	< 1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Mary Makarios	Client Services
James Norford	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

P Edmunds

Report	
Client Reference	
Received Date	

423371-W 7773 Jun 27, 2014

Client Sample ID Sample Matrix			7773-SW-01 Water	7773-SW-02 Water	7773-SW-03 Water	7773-SW-04 Water
Eurofins mgt Sample No.			S14-Jn24361	S14-Jn24362	S14-Jn24363	S14-Jn24364
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.002	0.003	0.003
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.001	0.002	0.001	0.002
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			7773-SW-BR1 Water S14-Jn24370 Not Provided	7773- RINSATE-01 Water S14-Jn24371 Not Provided
Test/Reference	LOR	Unit	not i roviaca	not i roviaca
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.004	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8 filtered	Sydney	Jun 27, 2014	28 Day

- Method: E020/E030 Filtered Metals in Water & E026 Mercury

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 B

 Unit F6, Building F
 1,

 16 Mars Road
 M

 Lane Cove West NSW 2066
 P

 Phone: +61 2 9900 8400
 N

 NATA # 1261 Site # 18217
 State # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	Company Name: Address:AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128Client Job No.:7773						Order No.: Report #: Phone: Fax:			423371 02 9400 7711 02 9401 0097					Received: Due: Priority: Contact Name:	Jun 27, 2014 4:30 PM Jul 7, 2014 5 Day D. Jones
					N %	Poly	Org	Met	Met	Poly	Spe	Org	Tota		Euronns mg	t Client Manager: Mary Makarios
Sample Detail					% Moisture	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated Phenols	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons			
Laboratory who	ere analysis is c	onducted														
Melbourne Lab	oratory - NATA	Site # 1254 & 14	4271											-		
	tory - NATA Site				Х	X	Х	Х	Х	Х	Х	Х	Х	-		
	ratory - NATA S	ite # 20794				-			[!]					-		
External Labor		0			-									4		
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
7773-SP1	Not Provided		Soil	S14-Jn24360	Х	Х	Х	Х				Х	Х			
7773-SW-01	Not Provided		Water	S14-Jn24361					Х							
7773-SW-02	Not Provided		Water	S14-Jn24362					Х							
7773-SW-03	Not Provided		Water	S14-Jn24363					Х					1		
7773-SW-04	Not Provided		Water	S14-Jn24364					Х							
7773-SP1-01A	Not Provided		Soil	S14-Jn24365	Х					Х	Х					
7773-SP1-02A	Not Provided		Soil	S14-Jn24366	Х					Х	Х					
7773-SP1-03A	Not Provided		Soil	S14-Jn24367	Х					Х	Х			-		
	Not Provided		Soil	S14-Jn24368	Х					Х	Х			-		
7773-SP2-02A	Not Provided		Soil	S14-Jn24369	Х					Х	Х]		

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name:AD Envirotech Aust Pty LtdAddress:Unit 4/ 10-11 Millenium CourtSilverwaterSW 2128Client Job No.:7773				Order No.:Report #:423371Phone:02 9400 7711Fax:02 9401 0097							Received: Due: Priority: Contact N	Name:	Jun 27, 2014 4:30 PM Jul 7, 2014 5 Day D. Jones			
		Sample Detail			% Moisture	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	Polychlorinated Biphenyls (PCB)	Speciated Phenols	Organophosphorus Pesticides (OP)	Total Recoverable Hydrocarbons	Euro	rins mgr	Client Manager: Mary Makarios
Laboratory whe																
		Site # 1254 & 14	1271													
Sydney Labora					X	Х	Х	Х	Х	Х	Х	Х	Х			
Brisbane Labo		5ite # 20794			-											
External Labor			110/-1	011.1:01070					V							
7773-SW-BR1 7773- RINSATE-01	Not Provided Not Provided		Water Water	S14-Jn24370 S14-Jn24371					X X							

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100mL: Most Probable Number of organisms per 100 millilitres	

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

eurofins mgt

Quality Control Results

Test				Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic (filtered)			mg/L	< 0.001			0.001	Pass	
Cadmium (filtered)		mg/L	< 0.0001			0.0001	Pass		
Chromium (filtered)			mg/L	< 0.001			0.001	Pass	
Copper (filtered)			mg/L	< 0.001			0.001	Pass	
Lead (filtered)			mg/L	< 0.001			0.001	Pass	
Mercury (filtered)			mg/L	< 0.0001			0.0001	Pass	
Nickel (filtered)			mg/L	< 0.001			0.001	Pass	
Zinc (filtered)			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery				_				_	
Heavy Metals									
Arsenic (filtered)			%	104			70-130	Pass	
Cadmium (filtered)			%	106			70-130	Pass	
Chromium (filtered)			%	103			70-130	Pass	
Copper (filtered)			%	103			70-130	Pass	
Lead (filtered)			%	112			70-130	Pass	
Mercury (filtered)	%	107			70-130	Pass			
Nickel (filtered)	%	106			70-130	Pass			
Zinc (filtered)			%	115			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								-	
Heavy Metals			-	Result 1					
Arsenic (filtered)	S14-Jn24361	CP	%	116			70-130	Pass	
Cadmium (filtered)	S14-Jn24361	CP	%	110			70-130	Pass	
Chromium (filtered)	S14-Jn24361	CP	%	105			70-130	Pass	
Copper (filtered)	S14-Jn24361	CP	%	97			70-130	Pass	
Lead (filtered)	S14-Jn24361	CP	%	105			70-130	Pass	
Mercury (filtered)	S14-Jn24361	CP	%	105			70-130	Pass	
Nickel (filtered)	S14-Jn24361	CP	%	101			70-130	Pass	
Zinc (filtered)	S14-Jn24361	CP	%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S14-Jn25742	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Chromium (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S14-Jn25742	NCP	mg/L	0.0030	0.0033	3.0	30%	Pass	
Lead (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S14-Jn25742	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S14-Jn25742	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S14-Jn25742	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios James Norford Client Services Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater **NSW 2128**

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	Evan Webb
Report	425789-W
Client Reference	7773

Received Date

5789-W 7773 Jul 21, 2014

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			7773-SW-01A Water S14-JI18243 Not Provided	7773-SW-01B Water S14-JI18244 Not Provided	7773-SW-02A Water S14-JI18245 Not Provided	7773-SW-02B Water S14-JI18246 Not Provided
Test/Reference	LOR	Unit				
Alkali Metals						
Calcium	0.5	mg/L	63	64	70	72
Magnesium	0.5	mg/L	60	120	65	67
Hardness Set						
Hardness mg equivalent CaCO3/L	1	mg/L	410	640	450	460

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Hardness Set			
Calcium	Sydney	Jul 21, 2014	180 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY	ICP-MS		
Magnesium	Sydney	Jul 21, 2014	180 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY	ICP-MS		
Hardness mg equivalent CaCO3/L	Sydney	Jul 21, 2014	28 Day
- Method: E020.1 Hardness in water			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nam Address:	Unit 4/ 1 Silverwa NSW 21					Order No.: Report #: Phone: Fax:	425789 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Jul 21, 2014 3:10 PM Jul 22, 2014 1 Day P Edmunds
Client Job No.	: 7773							Eurofins mg	Client Manager: Mary Makarios
		Sample Detail			Hardness Set				
Laboratory whe									
Melbourne Labo			2/1						
Sydney Laborat					X				
Brisbane Labora		te # 20794							
External Labora		Comulina	Matrix						
Sample ID	Sample Date	Sampling Time	Watrix	LAB ID					
7773-SW-01A	Not Provided		Water	S14-JI18243	Х				
7773-SW-01B	Not Provided		Water	S14-JI18244	Х				
7773-SW-02A	Not Provided		Water	S14-JI18245	Х				
7773-SW-02B	Not Provided		Water	S14-JI18246	Х				

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml : Most Probable Number of organisms per 100 millilitres	

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Alkali Metals									
Calcium			mg/L	< 0.5			0.5	Pass	
Magnesium			mg/L	< 0.5			0.5	Pass	
LCS - % Recovery									
Alkali Metals									
Calcium			%	95			70-130	Pass	
Magnesium			%	107			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	M14-JI14208	NCP	%	87			70-130	Pass	
Magnesium	M14-JI14208	NCP	%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	S14-JI18246	CP	mg/L	72	71	1.0	30%	Pass	
Magnesium	S14-JI18246	CP	mg/L	67	67	1.0	30%	Pass	
Duplicate									
Hardness Set				Result 1	Result 2	RPD			
Hardness mg equivalent CaCO3/L	S14-JI18246	CP	mg/L	460	450	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Ivan Taylor Client Services Senior Analyst-Metal (NSW)

Dr. Bob Symons Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 7773 ASB 1

Date Received:	27.06.2014
Date Analysed:	27.06.2014
Report Date:	30.06.2014
Client:	The Next Generation
Job Location:	Eastern Creek NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtaboice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA aproved asbestos identifier

Results Authorised By:

Ao jrakvice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

Laboratory Sample No.			Result	Comments
7773-Asb1	Soil	45 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb2	Soil	40 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb3	Soil	52 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb4	Soil	62 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb5	Soil	45 grams	Chrysotile asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Amosite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Crocidolite asbestos NOT detected	No asbestos detected at reporting limit of 0.1 g/kg.
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil
7773-Asb6	Fibre Cement	2.4 x 2.3 x 0.4	Chrysotile asbestos detected	Nil
			Amosite asbestos NOT detected	Nil
			Crocidolite asbestos detected	Nil
			Synthetic mineral fibres NOT detected	Nil
			Organic fibres detected	Nil

General Comments:

All samples are analysed as received.

Samplig performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared specroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

APPENDIX VIII

BOREHOLE LOGS

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **72** of **75**

BOR	EF	HOLE LO	OG		Boreh	ole No.	BHO)4A		
Client	DA	DI			Project No.		7773			
Project	EI				Stage	Stage II				
Location	-33.	801712 S, 150.82632	9 E		Date		25.0	25.06.2014		
Method		d Auger	Casing type	N/A	Screen		N/A			
Diameter	N/A		Casing length	N/A	Screen		N/A			
Auger type Consultant	N/A	ones	Casing diam.	N/A	Screen		N/A			
Consultant	D.J	ones	Logged by		Signatu	ire				
Depth, m Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks		
-0- 		Dark brown silty l	oam					0		
		Light brown medi	Light brown medium clay, low plasticity					-		
		End of Boreh	ole					-		
								-		
								1-		
								-		
								-		
								-		
								-		
								-		
- , -								-		
								-		
								-		
								-		
								-		
								-		
								-		
-3-								-		
					1			-		
								_		
					1					
								-		
								-		
-4-								-		
1								-		
								-		
<u> </u>					1					
					1					
1	1			otech Australia	1 D(T)=			I		

BOR	EF	HOLE LO	DG		Boreho	ole No.	BHO)3A
Client	DADI Project No.						777	'3
Project	EI				Stage II			
Location	-33.	801588 S, 150.82585	1 E		Date		25.0	06.2014
Method		nd Auger	Casing type	N/A	Screen		N/A	
Diameter Auger type	N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A	
Consultant		ones	Logged by		Signatu		22	
Depth, m Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
0 BH03A 		Dark brown silty l	oam					0 <u>-</u> - - -
		End of Boreh	ole					_
								-
								- 1
								-
								_
								-
-,-								_
								-
								-
								-
								-
								-
`								-
								_
								–
								-
								–
- , -								
								_
			A D Envir	otech Australia	Dty I +A			1

BOR	EF	IOLE LO	OG		Boreho	ole No.	BHO)2 A
Client	DADI Proj					t No.	777	/3
Project	EI	EI Stage II						
Location	-33.8	800936 S, 150.82588	2 E		Date		25.0	06.2014
Method	Hai N/A	nd Auger	Casing type	N/A	Screen		N/A	
Diameter Auger type	N/A N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Consultant	D. J		Logged by		Signatu		DZ	
Depth, m Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
0 - - - - - - - -		Dark brown silty k	oam					0 - - - -
		End of Boreh	ole					_
								-
								- 1
								-
								_
								-
								-
,								_
								-
								-
								-
								-
								-
								-
3								-
								-
								-
								-
								-
								-
- 4 -								-
								-
I			A. D. Envir	otech Australia	Pty Ltd	<u> </u>		I

B	OR	EF	IOLE LO	OG		Boreh	ole No.	BHO)1A
C	lient	DADI Pr					t No.	777	'3
Pro	oject	EI				Stage II			
Loca	ntion	-33.	800585 S, 150.82586	6 E		Date		25.0	06.2014
Meth		Ha N/A	nd Auger	Casing type	N/A	Screen		N/A	
Diam Auge	er type	N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Cons	ultant		ones	Logged by		Signatu		ÐZ	
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
— 0 — — — — — — —	BH01A		Dark brown silty l	oam					0 —
			End of Boreh	ole					_
									-
									- 1
									-
									-
									-
									-
	1								-
									-
									-
									-
 - 3 -									
									-
									-
				A. D. Envir	otech Australia	Pty Ltd			1

Client DADI Project No. 7773 I Stage I I Location 33.80147 S, 150.824906 E Date 25.06.2014 Main Auger Casing type N/A Screen type N/A Outward Hand Auger Casing type N/A Screen type N/A Outward Outward Outward Screen type N/A Screen type N/A Outward Outward Outward Screen type N/A Screen type N/A Screen type Outward Outward Screen type N/A Screen type N/A Screen type	B	OR	EF	HOLE LO	DG		Boreho	ole No.	SP2-	-02A	
Logics Date 25.06.2014 Method Hand Auger Casing type N/A Screen tiggth N/A Auger type N/A Casing diam. N/A Screen tiggth N/A Consultant D.Jones Logged by Signature Signature Screen tiggth N/A Consultant D.Jones Logged by Signature Screen tiggth N/A Screen tiggth N/A u fg fg fg Description Signature Screen tiggth N/A sp:202 Description fg	C	lient	DA	DI			Project No.		7773		
Method Hand Auger Casing type N/A Screen type N/A Jameter NA Casing tend NA Screen length NA Auger type NA Casing diam. NA Screen length NA Auger type NA Longes Longed ty Signature Screen type NA Indication NA Screen tige NA Screen type NA Screen type NA Indication NA Screen type NA Screen type NA Screen type NA Indication NA Screen type NA Screen type NA Screen type NA Indication Doscription Signature Signature Screen type NA Screen type NA Street Screet	Pro	oject	EI				Stage		П		
$\begin{array}{c c c c c c } \hline Diameter & NA & Casing diam & NA & Screen leng M & NA \\ Auger type & NA & Casing diam & NA & Screen leng M & NA \\ \hline Casing diam & NA & Screen leng M & NA & Screen leng M & NA \\ \hline Casing diam & NA & Screen leng M & NA & Screen leng M & NA \\ \hline Casing diam & NA & Screen leng M & NA & Screen leng M & NA \\ \hline Casing diam & Screen leng M & NA & Screen leng M & Screen leng$	Loca	ation	-33.801147 S, 150.824906 E Date						25.0)6.2014	
Auger type NA Screen diam. N/A Screen diam. N/A Consultation D. Jours Logged by Signature Signa											
u u u u u u u u u -0	Auge	er type	N/A		Casing diam.		Screen	diam.	N/A	L	
Light brown sandy loam End of Borehole I I I I I I I I I I I I I I I I I I I	Cons	ultant	D. J	ones	Logged by			ire			
SP2-02A Light brown sandy loam ASB5 End of Borehole I ASB5 A		Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moistur		
		SP2-02A		Light brown sandy	7 loam					· · ·	
	E =			End of Bor	rehole					_	
	E _									_	
	-1-									1-	
	E =									_	
	<u> </u>									_	
	E -										
										_	
										-	
	-3-										
A D Envirotech Avetralia Dtv I td	=										
A D Envirotech Avetralia Dtv I td	-										
A. D. PAIVITOLECH AUSTRALIZ FIV LAG					A. D. Envir	otech Australia	Ptv Ltd				

B	OR	EF	HOLE LO	OG		Boreho	ole No.	SP2-	-01A	
C	lient	DA	DI			Project No.		7773		
Pro	oject	EI				Stage		п		
Loca	ation	-33.	801139 S, 150.824812	2 E		Date		25.0)6.2014	
Meth Diam		Hand AugerCasing typeN/AN/ACasing lengthN/A				Screen Screen		N/A N/A		
Auge	er type	N/A		Casing diam.	N/A	Screen	diam.	N/A	L	
Cons	ultant	D. J	ones	Logged by		Signatu	ire	e e		
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks	
0 	SP2-01A		Light brown sandy	7 loam					ASB4	
			End of Bor	ehole					-	
L _									_	
									1-	
									_	
									_	
F -										
									-	
									_	
L _									_	
– –										
-3-										
┣									-	
]	
-4-									-	
$\vdash \neg$									–	
				A. D. Envir	otech Australia	Pty Ltd				

BOR	REHOLE LO	OG		Boreho	ole No.	SP1	-03A		
Client	DADI			Projec	t No.	7773			
Project	EI	Stage				п	Ш		
Location	-33.801132 S, 150.82584	1 E		Date		25.0	06.2014		
Method	Hand Auger N/A	Casing type	N/A	Screen		N/A			
Diameter Auger type		Casing length Casing diam.	N/A N/A	Screen Screen		N/A			
Consultant	D. Jones	Logged by		Signatu		ÐŞ			
Depth, m Sample ID	Graphic log Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks		
0 – – – – SP1-034	Light brown sandy	y loam					ASB3		
	End of Boreh								
A. D. Envirotech Australia Pty Ltd									

BOREHOLE LOG			Borehole No.		SP1-02A					
Client	DA	DI			Project No.		7773			
Project	EI				Stage		п	п		
Location	-33.801182 S, 150.825786 E				Date		25.0)6.2014		
Method Diameter	Hand AugerCasing typeN/AN/ACasing lengthN/A			N/A N/A	Screen Screen		N/A N/A			
Auger type	N/A		Casing length Casing diam.	N/A N/A	Screen	diam.	N/A			
Consultant	D. J	ones	Logged by		Signatu	ire	925	è		
Depth, m Sample ID	Graphic log	Graphic log Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks		
0		Light brown sandy loam						ASB2		
		End of Boreh	ole					_		
								-		
								1-		
								-		
								_		
								-		
								_		
<u>-</u> 3-										
								_		
A. D. Envirotech Australia Pty Ltd										

B	BOREHOLE LOG			Borehole No.		SP1-01A					
Cl	ient	DA	DI			Projec	t No.	7773			
Pro	oject	EI				Stage		п	II		
Loca	tion	-33.801337 S, 150.825738 E				Date		25.0)6.2014		
Metho Diam		Hand AugerCasing typeN/AN/ACasing lengthN/A			N/A N/A	Screen Screen		N/A N/A			
Auge	r type	N/A		Casing diam.	N/A	Screen	diam.	N/A	L		
Consu	ultant	D. J	ones	Logged by		Signatu	ire	e e			
Depth, m	Sample ID	Graphic log	Description Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks		
0 	SP1-01A		Light brown sandy loam						ASB1		
F =			End of Boreh	ole					_		
F =									-		
-1-									1-		
\vdash \dashv									-		
									-		
╞╡											
									_		
									_		
ΕJ									_		
\vdash –									-		
									-		
F 1											
									_		
┝╶┤									-		
F 1									-		
╘╶╛									_		
┝┤									-		
F_=											
╘╶┤											
$\vdash \exists$									-		
╒╶╡											
A. D. Envirotech Australia Pty Ltd											

BC	OR	EF	IOLE LO	DG		Boreho	ole No.	BH1	.6		
Cl	ient	DA	DI			Project No.		7773			
Pro	ject	EI				Stage		II	II		
Loca	tion	-33.804252 S, 150.822908 E				Date		25.0)6.2014		
Metho			nd Auger	Casing type	N/A	Screen		N/A			
Diam		N/A		Casing length	N/A	Screen		N/A			
Auger	r type			Screen		N/A	~				
Consu	iltant	D.J	ones	Logged by		Signatu	re	PZ	900-		
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks		
- 0 - 	BH16		Brown clay loam						0 — BR2, SP1 — —		
			End of Boreh	ole							
									_		
-1-									1 —		
									_		
									_		
\vdash –									_		
\square									_		
\vdash –									-		
									_		
									_		
									_		
									_		
									_		
- , -									_		
⊢ ┥									-		
ΕJ											
$\vdash \dashv$											
┝┤											
ΓJ											
┝╶┨									-		
⊢ ⊣											
⊢ ┥											
ヒゴ											
┝┥									-		
	A. D. Envirotech Australia Pty Ltd										

BOR	EF	HOLE LO	OG		Boreho	ole No.	BH1	5		
Client	DA	DI			Projec	t No.	7773			
Project	EI				Stage		п	Ш		
Location	-33.804545 S, 150.824176 E				Date		25.0	06.2014		
Method Diameter	Har N/A	Hand AugerCasing typeN/AN/ACasing lengthN/A			Screen Screen		N/A N/A			
Auger type	N/A	L	Casing diam.	N/A	Screen	diam.	N/A	L		
Consultant	D. J	lones	Logged by		Signatu	ire	e e			
Depth, m Sample ID	Graphic log	Description			Munsell colour index	PID, ppm	SWL, moisture	Remarks		
— 0 — — — —		Brown clay loam								
F =		End of Boreh	ole					-		
								1-		
								-		
$ \models \dashv $										
\vdash –										
								-		
$ \vdash $								7		
								–		
F I]		
ヒゴ								_		
┝┥								_		
A. D. Envirotech Australia Pty Ltd										

B	OR	EF	IOLE LO	OG		Boreho	ole No.	BH1	4		
С	lient	DA	DI			Projec	t No.	7773			
Pro	oject	EI				Stage		п	II		
	ation	-33.803612 S, 150.822605 E				Date		25.0	06.2014		
Meth			nd Auger	Casing type	N/A	Screen		N/A			
Dian		N/A		Casing length	N/A	Screen		N/A			
Auge	er type	N/A		Casing diam.	N/A	Screen		N/A			
Cons	ultant	D.J	ones	Logged by		Signatu	ire	25	Samo-		
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks		
0 	BH14		Brown silty loam						0 — — — —		
			End of Boreh	ole					_		
	-								_		
<u> </u>											
-1-	-								1 —		
	-								-		
	1										
L –	-								_		
	1										
	-								_		
L,_											
	-								-		
L _											
┝ -	-								_		
									-		
	1										
	-								_		
-3-	1										
F	4										
┝ -	-								-		
L _											
	-										
	1								-		
F -	1]		
- 4 -	-								_		
	1								-		
F]]		
┝ -	-								-		
	1										
A. D. Envirotech Australia Pty Ltd											

BOR	EHOLE LO	OG		Boreho	ole No.	BH1	3
Client	DADI			Projec	t No.	777	3
Project	EI			Stage		II	
Location	-33.802837 S, 150.82339	4 E		Date		25.0)6.2014
Method	Hand Auger	Casing type	N/A	Screen		N/A	
Diameter Auger type	N/A N/A	Casing length Casing diam.	N/A N/A	Screen length Screen diam.		N/A	
Consultant	D. Jones	Logged by		Signature		25	
Depth, m Sample ID	Graphic log D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
- 0 - 	Brown silty loam						0 — — — —
$\vdash - \mid$	Light brown sand	ly loam					_
	End of H	Borehole					_
							_
							1-
-							-
							-
							-
\vdash -/							_
-2-							_
							_
\vdash -							_
-							_
-3-							_
							_
\vdash -							-
-							_
							-
[-]							
$\vdash \dashv \mid$							-
[]]							
	<u> </u>	A. D. Envir	otech Australia	Pty Ltd			

BC	OR	EF	IOLE LO	OG		Boreho	ole No.	BH1	2
Cli	ient	DA	DI			Projec	t No.	777	3
Pro	ject	EI				Stage		Π	
Loca	tion	-33.	802644 S, 150.82262	5 E		Date		25.0)6.2014
Metho		Han N/A	d Auger	Casing type	N/A	Screen		N/A	
Diame Auger		N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A	
Consu			ones	Logged by		Signatu			gers-
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
0 	BH12		Brown silty loam						
			End of Boreh	ole					_
- 1									
									- 1-
									-
- 1									_
									_
									_
,									_
									_
									_
									_
- 1									
									_
									_
									_
									-
									-
									_
1				A. D. Envir	otech Australia	Pty Ltd	1		

Client DADI Project EI Location -33.802318 S, 150.821970 E Method Hand Auger Casing type N/A Diameter N/A Casing length N/A Auger type N/A Casing diam. N/A			777 II 25 (3	
Location -33.802318 S, 150.821970 E Method Hand Auger Casing type N/A Diameter N/A Casing length N/A	Date Screen Screen	type			
Method Hand Auger Casing type N/A Diameter N/A Casing length N/A	Screen Screen	type	25.0	II	
Diameter N/A Casing length N/A	Screen	type		06.2014	
		Screen type		L	
Alloer type N/A Casing diam N/A	I Screen	Screen length		L	
			N/A		
Consultant D. Jones Logged by	Signatu	ire	DE	Samo	
Depth, m Sample ID Graphic log	Munsell colour index	PID, ppm	SWL, moisture	Remarks	
Brown silty loam					
End of Borehole				_	
1				1 —	
				-	
-				_	
				_	
				_	
				_	
				_	
				_	
				_	
				_	
]					
				-	
+ $ $ $ $				-	
4				-	
				_	
				-	
A. D. Envirotech Australia	D = 1				

BC)R	EF	HOLE LO)G		Boreho	ole No.	BH1	0	
Clie	ent	DA	DI			Projec	t No.	777	3	
Proj	ect	EI				Stage		Π	П	
Locati	ion	-33.	804667 S, 150.82540	7 E		Date		25.0)6.2014	
Methoo Diamet		Han N/A	nd Auger	Casing type	N/A	Screen		N/A		
Auger		N/A		Casing length Casing diam.	N/A N/A	Screen length Screen diam.		N/A		
Consul			ones	Logged by		Signatu		DZ		
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks	
— 0 — — — — — — — — — — —	3H10		Brown clay loam						0 <u>-</u> 	
			End of Boreh	ole						
 - 1 - 									- 1-	
									_	
									_	
									_	
-2									_	
									_	
									_	
									_	
									_	
									_	
									_	
									-	
i				A. D. Envir	otech Australia	Pty Ltd				

B	OR	EF	HOLE LO	OG		Boreho	ole No.	BHO	9
Cl	lient	DA	DI			Projec	t No.	777	3
Pro	oject	EI				Stage		п	
Loca	ation	-33.	801861 S, 150.82309	1 E		Date		25.0)6.2014
Meth Diam		Han N/A	nd Auger	Casing type Casing length	N/A N/A	Screen		N/A N/A	
Auge	er type	N/A		Casing diam.	N/A N/A	Screen length Screen diam.		N/A	L
Const	ultant	D. J	ones	Logged by		Signatu	re	e	
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
0 	ВН09		Dark brown silty loam						0 — — — — —
			End of Boreh	ole					-
E									
-1-									1
E									3
\square									_
F –									
\square									
									_
\vdash \neg									
╞╶╡									
╞╶┥									
									_
$\begin{bmatrix} - & - \\ - & - \end{bmatrix}$									7
F 7									
$ \vdash \dashv$									
	1			A D East	ataah Australia	Dty I 4-1			
				A. D. Envir	otech Australia	rty Ltd			

D:\ADEforms\bh.fh3

BC	R	EF	IOLE LO	DG		Boreho	ole No.	BHO)8A
Clie	ent	DAI	DI			Projec	t No.	777	/3
Proje	ect	EI				Stage		Π	
Locati	on	-33.8	801572 S, 150.82211	l E		Date		25.06.2014	
Method Diamete		Han N/A	d Auger	Casing type	N/A	Screen		N/A	
Auger t		N/A		Casing length Casing diam.	N/A N/A	Screen length Screen diam.		N/A	
Consult		D. J		Logged by		Signatu		ÐZ	
Depth, m	Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
— 0 — — — — BI — — — — — — —	H08A, R01		Brown silty loam Light brown sandy	⁷ loam					0
			End of Boreh	ole					- - - - - - - -
									-
									-
				A. D. Envir	otech Australia	Pty Ltd			

BOR	EF	HOLE LO	OG		Boreho	ole No.	BHO	7	
Client	DA	DI			Projec	t No.	777	3	
Project	EI				Stage		II	Π	
Location	-33.	803061 S, 150.82506	9 E		Date		25.0)6.2014	
Method		d Auger	Casing type	N/A	Screen	type	N/A	N/A	
Diameter	N/A		Casing length	N/A	Screen		N/A		
Auger type	N/A		Casing diam.	N/A	Screen		N/A		
Consultant	D.J	ones	Logged by		Signatu	re	DE		
Depth, m Sample ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks	
0 BH07 		Dark brown mediu						0 -	
		End of Boreh	ole					-	
								-	
-1-								1 -	
								-	
								-	
								-	
								-	
								-	
								-	
-2-								-	
								-	
3									
1									
]								-	
								-	
1	I							-	

BO	REF	HOLE LO	OG		Boreh	ole No.	BHO	06A
Client	t DA	DI			Projec	et No.	777	3
Project	EI				Stage		п	
Location	ı -33.	.801746 S, 150.82482	8 E		Date		25.0	06.2014
Method		nd Auger	Casing type	N/A	Screen		N/A	
Diameter Auger typ	N/A e N/A		Casing length Casing diam.	N/A N/A	Screen Screen		N/A N/A	
Consultar		lones	Logged by	1011	Signatu		25	
Depth, m Samola ID	Graphic log	D	escription		Munsell colour index	PID, ppm	SWL, moisture	Remarks
— 0 — — — — вно — — —	6A	Dark brown silty l	oam					0 <u>-</u>
		End of Boreh	ole					_
								- 1-
								-
								_
								_
-,-								_
								_
\square								
								_
= 1								
								_
-								
								_
								_
-								–
								_
			A. D. Envir	otech Australia	Pty Ltd			

BOR	EHOLE	LOG	Borehole	e No.	BHO	95A
Client	DADI		Project 1	No.	777	3
Project	EI		Stage		II	
Location	-33.801474 S, 150	.823834 E	Date		25.0	06.2014
Method	Hand Auger N/A	Casing type N/A	Screen ty		N/A	
Diameter Auger type				N/A N/A		
Consultant	D. Jones	Logged by	Signature		ÐZ	
Depth, m Sample ID	Graphic log	Description	Munsell colour index	PID, ppm	SWL, moisture	Remarks
0 BH05A 	Dark brown	a silty loam (fill)				0 - - - -
	End of	Borehole				_
						-
						- 1
						-
						-
						-
						-
- , -						-
						-
						-
						-
						-
3						-
						-
						-
						-
						-
- 4 - 						-
						-
I		A. D. Envirotech Aus	tralia Pty I td			I

APPENDIX IX

WORKCOVER CONTAMINATED GOODS SEARCH

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

D. . . **72** . (

Page **73** of **75**

WorkCover NSW 92-100 Donnison Street, Gosford, NSW 2250 Locked Bag 2906, Lisarow, NSW 2252 T 02 4321 5000 F 02 4325 4145 WorkCover Assistance Service 13 10 50 DX 731 Sydney workcover.nsw.gov.au

Our Ref: D14/050150 Your Ref: Evan Webb

24 April 2014

Attention: Evan Webb AD Envirotech Australia Pty Ltd 4/10-11 Millenium Ct Silverwater NSW 2128

Dear Mr Webb,

RE SITE: Lots 2 & 3 DP 1145808 Eastern Creek NSW

I refer to your site search request received by WorkCover NSW on 17 April 2014 requesting information on licences to keep dangerous goods for the above site.

Enclosed are copies of the documents that WorkCover NSW holds on Dangerous Goods Licence 35/012865 relating to the storage of dangerous goods at the above-mentioned premises, as listed on the Stored Chemical Information Database (SCID).

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones Senior Licensing Officer Dangerous Goods Notification Team

Licence No. 35/012865

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/012865 to 29/11/2004 . I confirm that all the licence details shown below are correct (amend if necessary).

10 (Signature)

FNN IKS

Date signed)

fax (02) 92875500

Enquiries:ph (02) 43215500

(Signature) (Please print name) for: PIONEER CONSTRUCTION MATERIALS PTY LTD

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section LOCKED BAG 2906 LISAROW NSW 2252

Details of licence on 2 July 2003

Licence Number 35/012865

Expiry Date 29/11/2003

LICENSEE PIONEER CONSTRUCTION MATERIALS PTY LTD ACN 009 679 734 WALLGROVE QUARRY

Postal Address: WALLGROVE QUARRY P O BOX 3042 MOUNT DRUITT VILLAGE NSW 2770 (-LENN TROY Licensee Contact DAVID BOLTON (MANAGER) Ph. 02 9625 0444 Fax. 02 9625 2435

Premises Licensed to Keep Dangerous Goods

PIONEER CONSTRUCTION MATERIALS PTY LTD WALLGROVE QUARRY LOT 11 OLD WALLGROVE RD EASTERN CREEK 2766

Nature of Site GRAVEL AND SAND QUARRYING

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site		
Site staffing 24 HRS 7 DAYS	GLENN TROY	0409080749

Details of Depots

Depot No.	Depot Type	Goods Stored in Depot		Qty
1		Class 1.1D	4000 KG	

	UN 0042 BOOSTERS		200 NO.	
	UN 0241 EXPLOSIVE, BL	ASTING, TYPE E	1000 KG	
2	MAGAZINE	Class 1.1B	1100 NO.	
	UN 0029 DETONATORS,	NON-ELECTRIC		300 NO.
	UN 0360 DETONATOR A	SSEMBLIES, NON-	ELECTRIC	400 NO.
5	ABOVE-GROUND TANK	Class C1	100000 L	
	UN 00C1 DIESEL		40000 L	

Licence No. 35/012865

WorkCover New South Wales, 400 Kent Street, Sydney 2000. Tel: 9370 5000 Fax: 9370 5999 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS WORKCO ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREWOODER^{H W}

DECLARATION: Please renew licence number 35/012865 to 29/11/2002. I confirm that all the licence details shown below are correct (amend if necessary).

Jun (Signature)

DAVID BOLTON

(Date signed)

for: PIONEER CONSTRUCTION MATERIALS PTY LTD

THIS SIGNED DECLARATION SHOULD BE RETURNED TO: (please do not fax)WorkCover New South WalesEnquiries: ph (02) 9370 5187Dangerous Goods Licensing Sectionfax (02) 9370 6104GPO BOX 5364GPO BOX 5364

Details of licence on 31 October 2001

SYDNEY 2001

Licence Number 35/012865

Expiry Date 29/11/2001

LICENSEE PIONEER CONSTRUCTION MATERIALS PTY LTD ACN 009 679 734

Postal Address: WALGROVE QUARRY BOX 242 P O MOUNT DRUITT VILLAGE NSW 2770

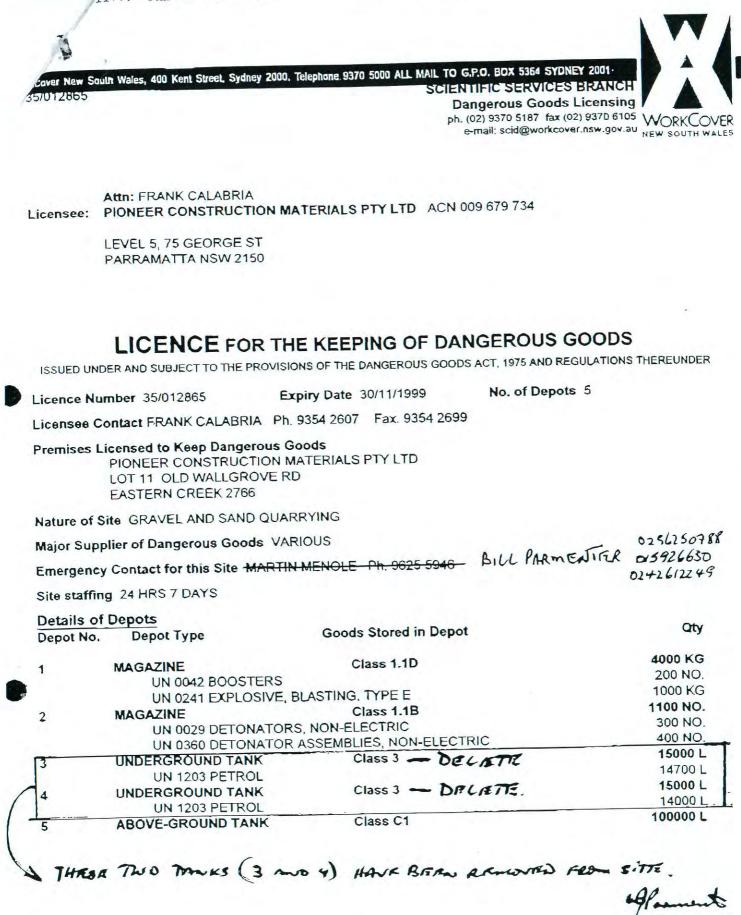
Licensee Contact BIN/RARMENJER(MANAGER), Ph. 02 9625 0444 Fax. 02 9625 2435 DAVID BOLTON (MANAGER). Premises Licensed to Keep Dangerous Goods

PIONEER CONSTRUCTION MATERIALS PTY LTD WALGROVE QUARRY LOT 11 OLD WALLGROVE RD EASTERN CREEK 2766

Nature of Site GRAVEL AND SAND QUARRYING

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site	BILD PARMENTER (HOME)	Ph. 02 4261 2249	DAVID BOLTON
Site staffing 24 HRS 7 DAYS			Ph: 0417242044.


Details of Depots

Depot No.	Depot Type	Goods Stored in Depot	Qty
1	MAGAZINE	Class 1.1D	4000 KG
	UN 0042 BOOSTE	RS	200 NO.
	UN 0241 EXPLOS	IVE, BLASTING, TYPE E	1000 KG
2	MAGAZINE	Class 1.1B	1100 NO.
	UN 0029 DETONA	TORS, NON-ELECTRIC	300 NO.
	UN 0360 DETONA	TOR ASSEMBLIES, NON-ELECTRIC	400 NO.
5	ABOVE-GROUND TANK	the second states of the second states and the second second states and the second states and the second states	100000 L
	UN 00C1 DIESEL		40000 L

11:59 FAX 02 9625 2435

WALLGROVE QUARRY

101 UZ

PLEASE RETAIN AS PROOF OF LICENCE -Issued by Workcover Authority of New South Wales on 29 January 1999

TIND, WWW CONCOVERINSW DOVIDU

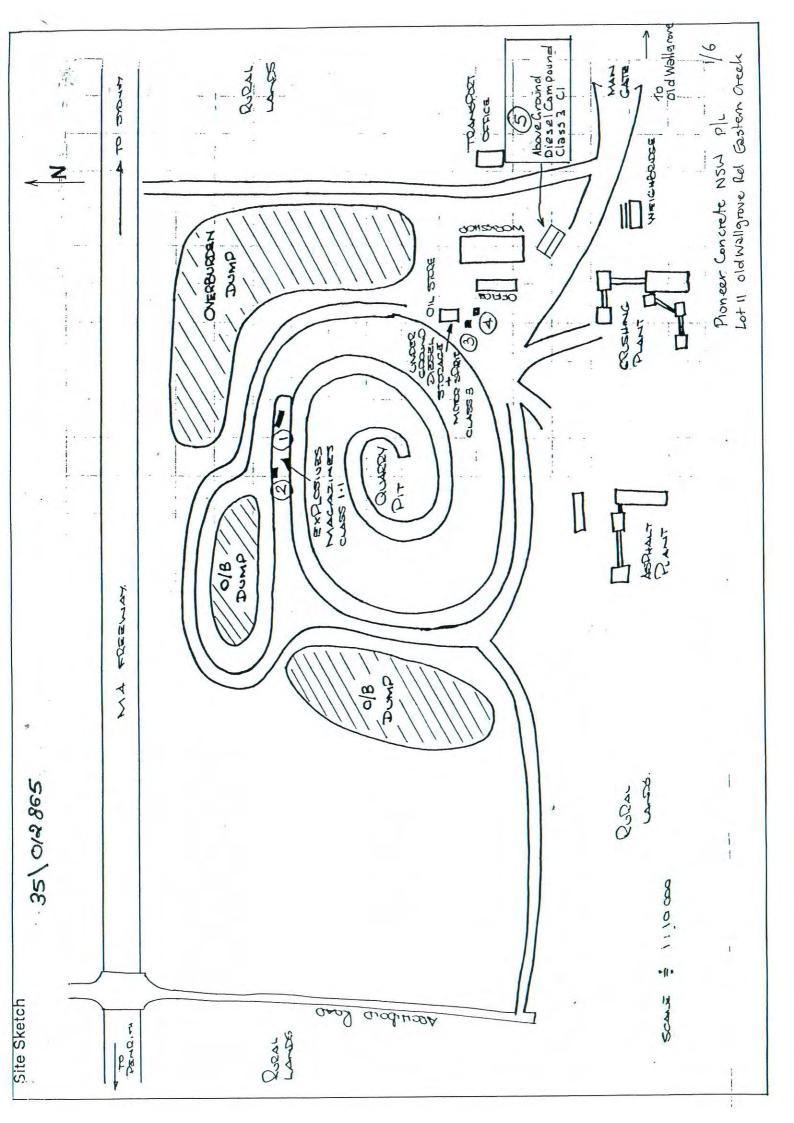
DX 13067, MARKET ST SYDNEY

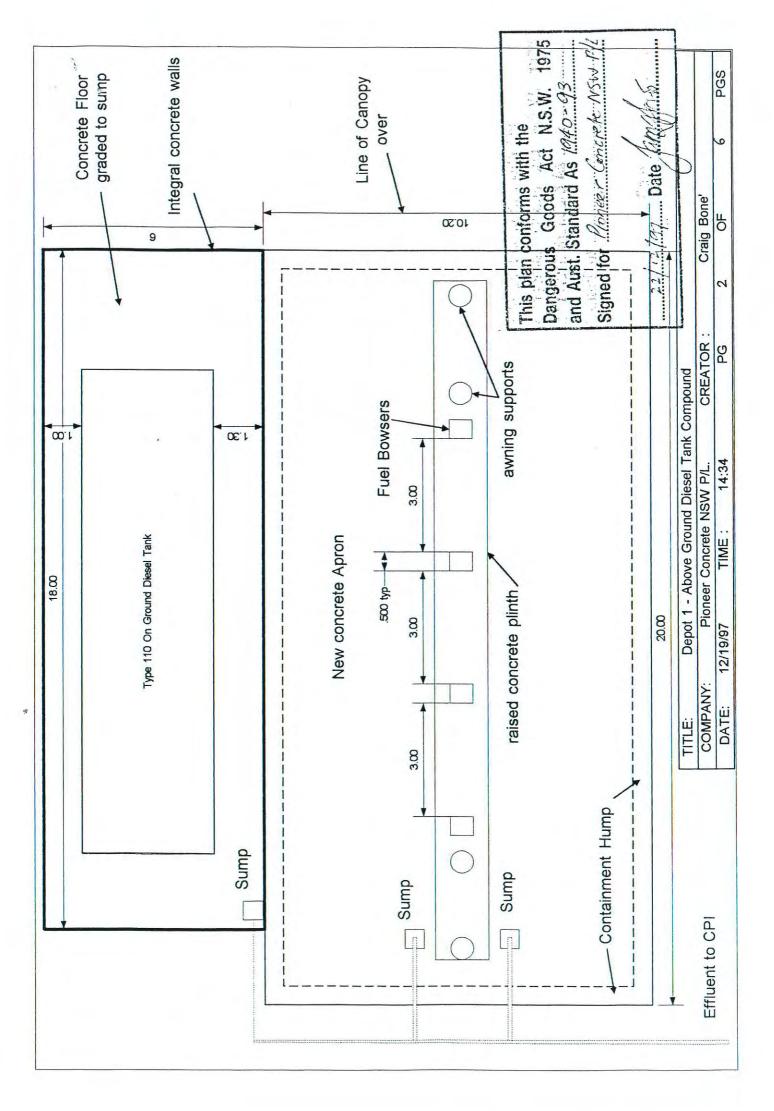
1	ork 🗠 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓
	** REMINDER NOTICE **
	APPLICATION FOR RENEWAL WORKCOVER
	OF LICENCE TO KEEP DANGEROUS GOODS
	ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER
	DECLARATION: Please renew licence number 35/012865 to 2001/2002 . I confirm that
	all the licence details shown below are correct (amend if necessary).
	(Signature) (Please print name) (Date signed) for: PIONEER CONSTRUCTION MATERIALS PTY LTD
	THIS SIGNED DECLARATION SHOULD BE RETURNED TO:
	WorkCover New South Wales
	Dangerous Goods Licensing Section Enquiries: ph (02) 9370 5187
	GPO BOX 5364 fax (02) 9370 6104
	SYDNEY 2001
	Details of licence on 8 August 2000
	Licence Number 35/012865 Expiry Date 30/11/1999 No. of Depots 3
	Licensee PIONEER CONSTRUCTION MATERIALS PTY LTD ACN 009 679 734 WALGROVE QUARRY
	Postal Address: WALGROVE QUARRY BOX V42 P 0 MOUNT DRUITT VILLAGE NSW 2770
	Licensee Contact BILL PARMENTER(MANAGER) Ph. 02 9625 0444 Fax. 02 9625 2435
	Premises Licensed to Keep Dangerous Goods
	PIONEER CONSTRUCTION MATERIALS PTY LTD WALGROVE QUARRY
	LOT 11 OLD WALLGROVE RD
	EASTERN CREEK 2766
	Nature of Site GRAVEL AND SAND QUARRYING
	Major Supplier of Dangerous Goods VARIOUS
	Emergency Contact for this Site BILL PARMENTER (HOME) Ph. 02 4261 2249 - 0407926630
	Site staffing 24 HRS 7 DAYS
	Details of Depots
	Depot No. Depot Type Goods Stored in Depot Qty
	1 MAGAZINE Class 1.1D 4000 KG
	UN 0042 BOOSTERS 200 NO.
	UN 0241 EXPLOSIVE, BLASTING, TYPE E 1000 KG
	2 MAGAZINE Class 1.1B 1100 NO.
	UN 0029 DETONATORS, NON-ELECTRIC 300 NO.
	UN 0360 DETONATOR ASSEMBLIES, NON-ELECTRIC 400 NO.
	5 ABOVE-GROUND TANK Class C1 100000 L
	UN 00C1 DIESEL 40000 L

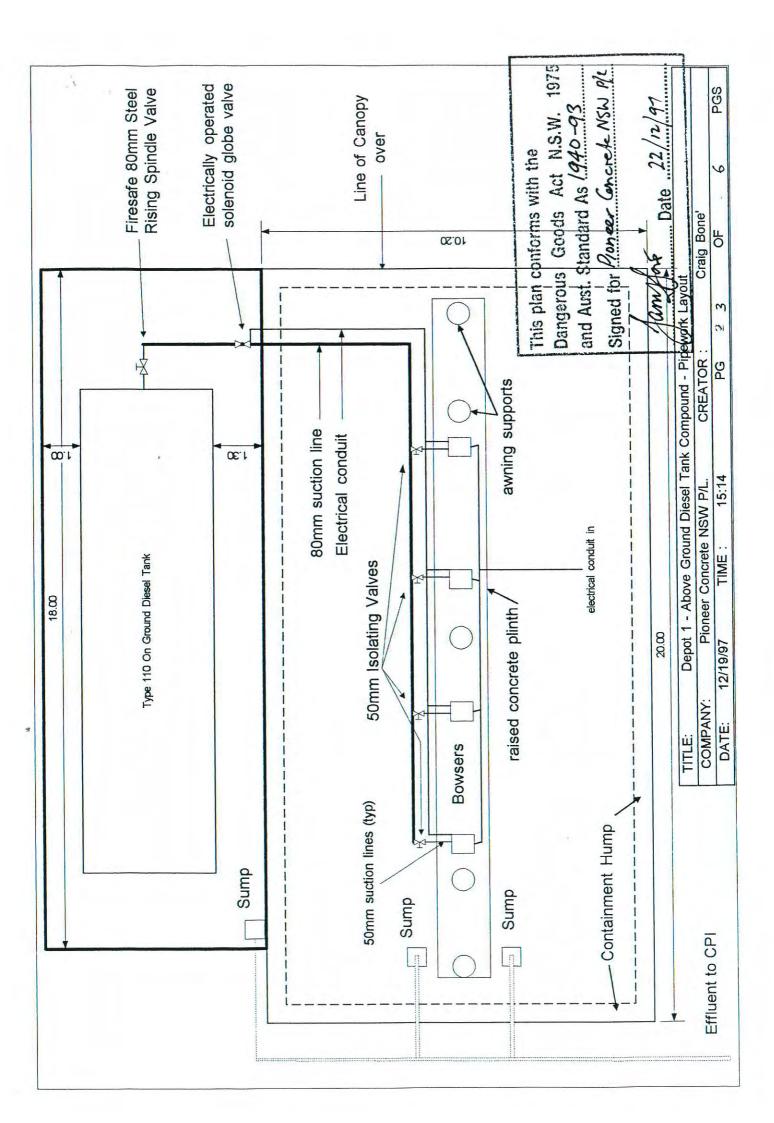
-	ATM		5		No. and the second	1
Applic Licen	atior	for				
licen	ce to	Kee	p			
Dange	erous		SE	NEV		VER ALES
ppnoullon in E	· · · · · · · · · · · · · · · · · · ·	ndment 🗹 trar	isfer 🗌 renew	al of exp	bired licence	
Expin:	30.11.99					
PART A - Applica	ant and site info	ormation See	page 2 of Guidance ACN	e Notes		
Name of applicant				679	734	
Pioneer Construction		mited	-Suburb/Town	OTI	Postcode_	
Postal address of app	1		Parvamatta	A CONTRACTOR	2150	
Lv15, 75 Ge 3 Trading name or site		N	1 41 14110(110)			
Pioneer Construction		mited				
4 Contact for licence in Phone		Name				
(02) 9354 2607	(02)9354 2699	Frank	Calabria			
5 Previous licence num	iber (if known) 35/	012865	4			
6 Previous occupier (if	known) Piev	neer Concrete 1	NSW) Pty Ltd			
7 Site to be licensed	Street Lof 11.					
No	Old Wallar	inve Road				
Suburb / Town	Via vuligi	C'E NOCH	Postcode			
	Eastern Ci	reek	27	66	Selected in March	
The second second		Electronic and a	and Replaced in			
8 Main business of sit	e Gravel	& Sand quar	lying	Contraction of the		
9 Site staffing: Hours		Days per we	eek 7	RE	CEIVE	DI
10 Site emergency con Phone	tact	Name		18	DEC 1998	
×9625	5946	1 Martin	Menole	1		
				SCIEN	TIFIC SERVIC	ES
11 Major supplier of da		arious	idance Notes	P P R D		
12 If a new site or for a Plan stamped by:	Name of Accredited	Consultant	Date star	mped		
	A CARLES OF STREET		The state of the second			
I certify that the details	in this application (inclu	uding any accompan	ying computer disk)	are correc	ct and cover a	all
licensable quantities of 13 Signature of applica	dangerous goods kept	Printed name			ate , ,	
A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	dabua	FRANK CA	ARDIA		1/12/98	6
flooring		THINK CH	1.03211.		1	
Please send your	application, marked (CONFIDENTIAL, to:				
Dangerous Go	oods Licensing,	Level 3, Locke	d Bag 10, Clare	ence S	treet,	
SYDNEY NSW	2000	A CONTRACTOR				
A DESCRIPTION OF A DESC	The second s	and the second sec				

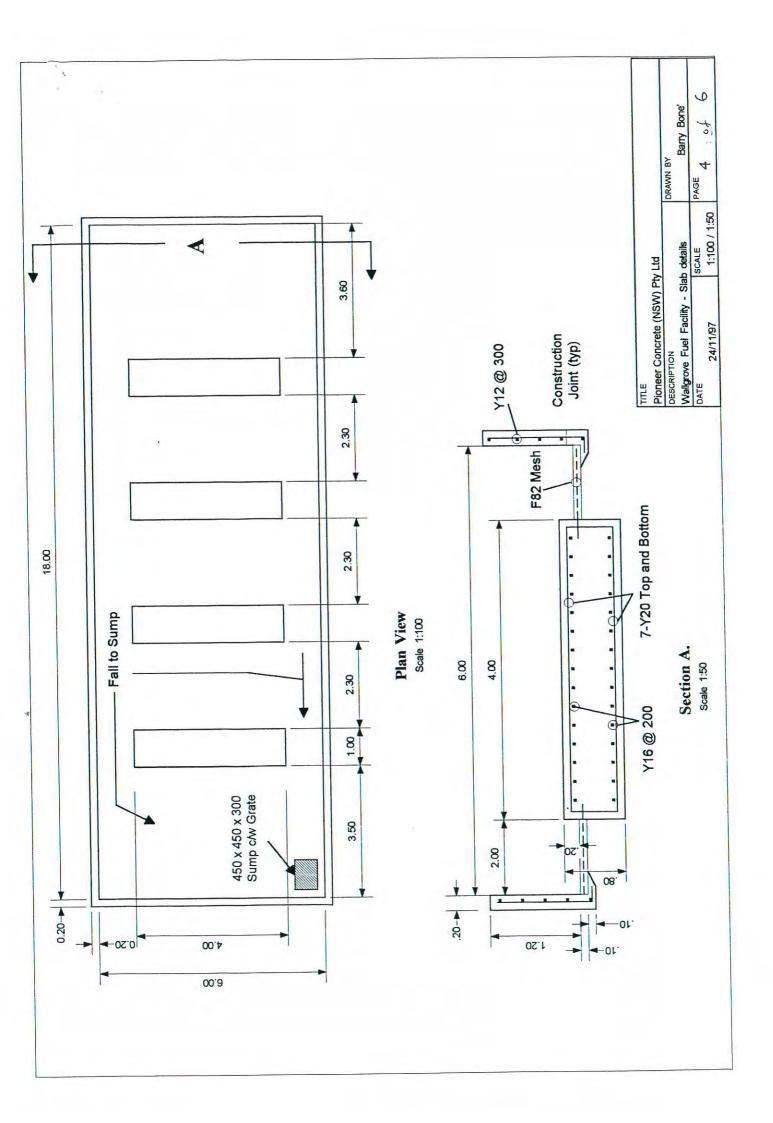
ATTE		15			-	
	tion	for				
aplica licence	HOU					
icence	e to	Kee	0			
Danger	ous	G 00	005	Ż	WORKCO)VFR
					NEW SOUTH V	WALES
lication for 🗌 new licen	ce 🗹 ameno	Iment 🗌 tr	ansfer	renewal o	f expired licen	ce
3xp clare 30/11/98						
ART A – Applicant a	nd site info	rmation See			otes.	
Name of applicant PIONEER CON	COSTE N	SW Pty Lt.		CN 301 8	879	
Postal address of applicant	JULEIL N	300 FIGLIA	Suburb/T	A REAL PROPERTY AND	Postcode	
	Mt Druit	Ť	of the state of the state	Druitt	2770	
Trading name or site occupie	er's name			CT Let 1		
PIONEER Co-	SCRIETE M	usin p/L				
Contact for licence inquiries Phone Fax		Name				
09625-3030 02	98321026	Dennis	Dobsor	1		
Previous licence number (if k	(nown) 35/ C	12865		IREC	EIVED	
Draviaus assuraist (if (nown)	50	-2 P				
Previous occupier (if known) Site to be licensed	Carrier Marrie			251	19 98 H	
	old Wallgr	ove Road		SCIENTI	-IC SERVICES	
Suburb / Town				Postcode	1100	Th
E	astern Cre	iek	a a series a	2766	chern	y s
Main business of site	Gravel + ?	band Quar	rying		- Liten 31.8 -	98 43
	A STORAGE					- 4
Site staffing: Hours per day	10	Days per w	veek	6		
) Site emergency contact Phone		Name				
02) 9625 - 30	030	Denn	s Dubsur	1.	AND AND AND AND AND	
Major supplier of dangerous	anods A	MPUL				
2 If a new site or for amendm		and the second	uidance Not	es.	1. 1. 1. 1. 1.	
an stamped by: Name	of Accredited C	onsultant		Date stamped		
	BomyB	mé	07.000	18/5/0	18	
certify that the details in this a	oplication (includi	ng any accompar	iying compu	ter disk) are co	rrect and cover	all
censable quantities of dangero	us goods kept or	the premises.			Date	
3 Signature of applicant		nicu name		THE PARATA	all all a state the second	2
Jeans Joleson		DENNIS	DARSI	145	21.5.95	X

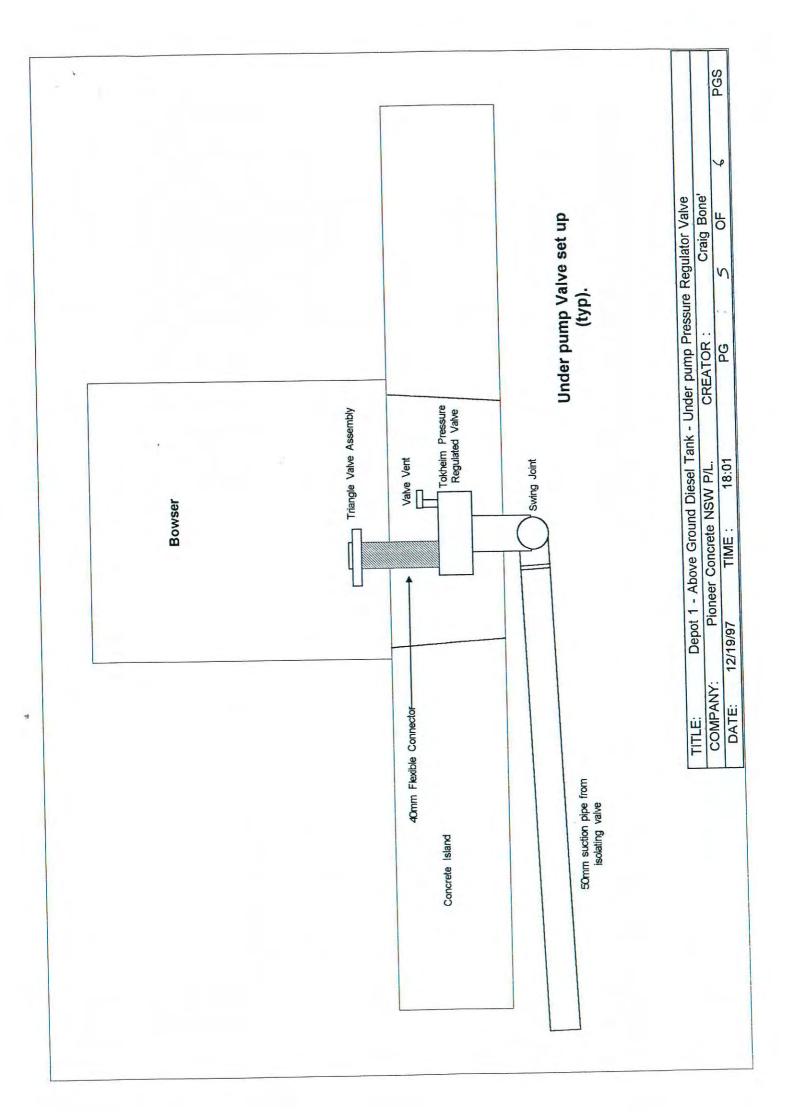
What-Date a depot? See page 5 of the Guidance Notes. PART C – Dangerous Goods Storage Complete one section per depot.

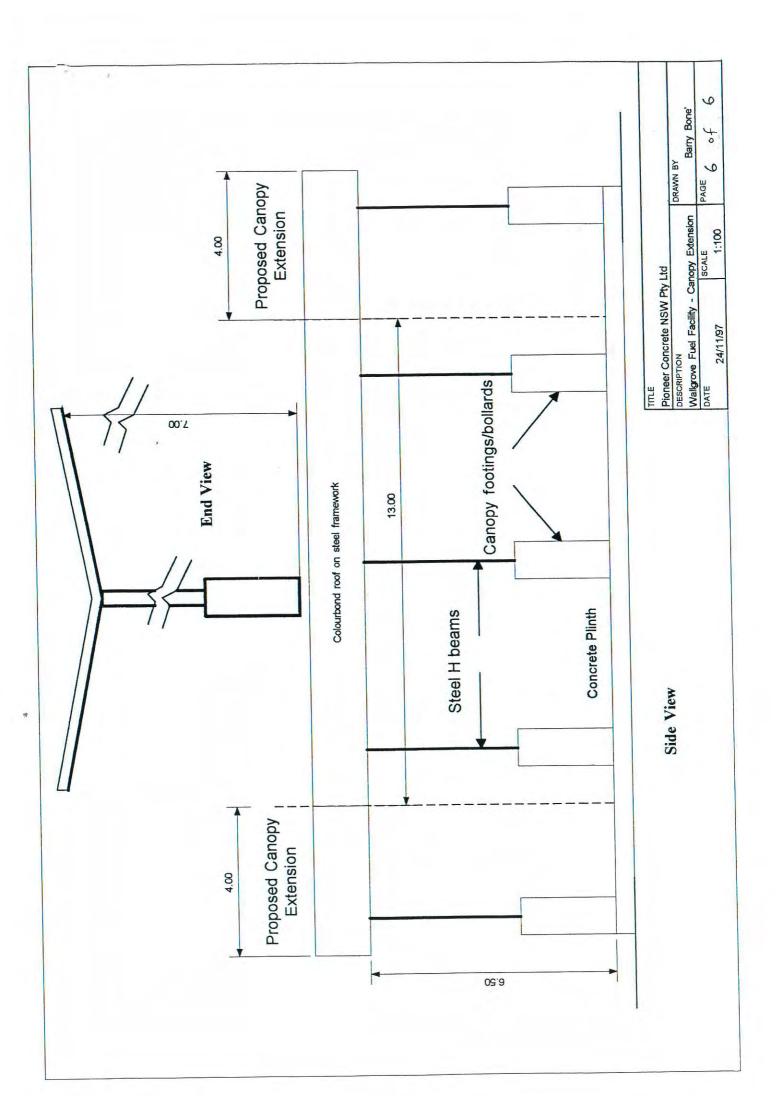

If you have more depots than the space provided, photocopy sufficient sheets first.


Depot Number	Type of depot (see page 5)	Depot Class		mum capacity	
\$ 5	Above Graund Tank	BC1	100 000	> L	
UN Number	PG Proper Shipping Name Class (I, II, III)	And an an a Merson	duct or on name	Typical quantity	Unit, e.g. L, kg, m ³
1202	DIESEL FUEL 3 CI	DIESE		40,000	2


Depot Number	Type of depot (see page 5)	Depot Class	Maximum storage capacity
UN Number	Proper Shipping Name Class (I,	PG Produc IL-III) common	


Depot Number	Type of depot (see p	bage 5)	Depot Class	Maxim storage ca		
UN • Number	Proper Shipping Name	PG Class (I, II, III)	Produc common		Typical quantity	Unit, e.g. L, kg, m ³


Depot Number	Type of depot (see page 5)	Depot Class	Maximum storage capaeity
UN Number	PG Proper Shipping Name Class (I, II, I	H) Production	



WorkCover wew South Wales, 400 Kent Street, Sydney 2000. Telephone (02) 9370 5000 ALL MAIL TO LOCKED BAG 10. CLARENCE STREET SYDNEY 2000

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION:

Reference

Please renew licence number 35/012865 to 1997. I confirm that all the licence details shown below are correct (amend if necessary).

(Signature) (Please print name) (Date signed)

for: PIONEER CONCRETE (NSW) P/L

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section (Level 3) Locked Bag 10 P O CLARENCE STREET 2000

Details of licence on 14 October 1996

Licensee PIONEER CONCRETE (NSW) P/L ACN 000 301 8791L ROOM Postal Address BOX V42 P O, MOUNT DRUITT VILLAGE Licensee Contact Oregeteghissa Ph. 625 5946 Fax. 625 Premises Licensed to Keep Dangerous Goods OLD WALLGROVE RD

RECEIVED RECEIVED 22 OCT 1956 2770² OCT 1996 2435 NEW SCIENTIFIC SERVICES NEW SCIENTIFIC SERVICES NEW SCIENTIFIC SERVICES NEW SCIENTIFIC SERVICES

EASTERN CREEK 2766

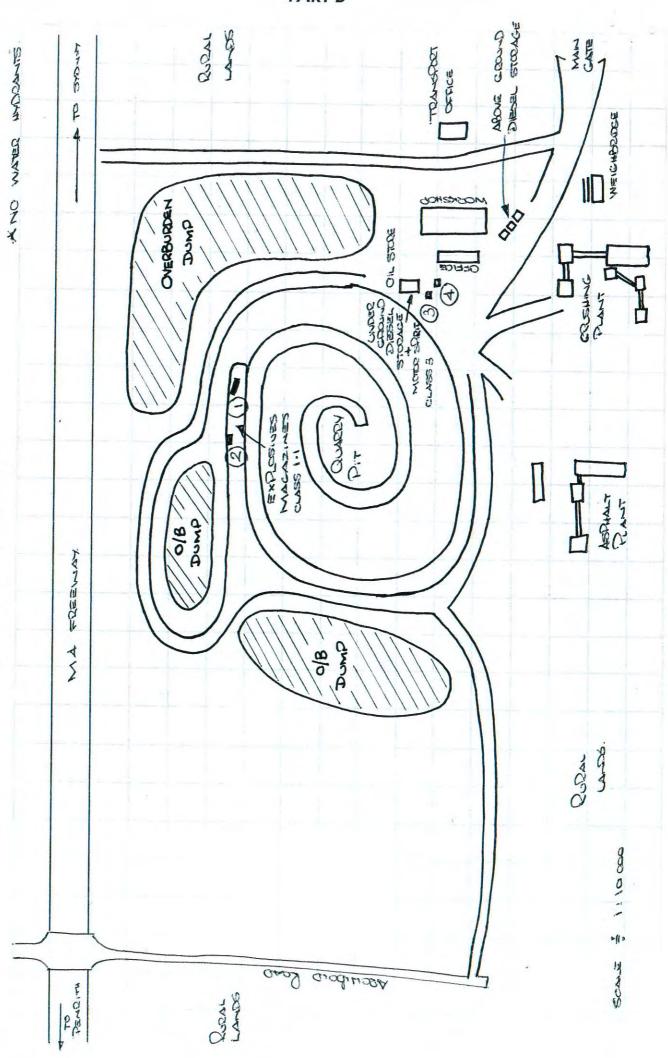
Nature of Site CONSTRUCTION MATERIALS NEC - Mining Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site Bob Graham/Martin Mende ph. 625 5946

Site staffing 24 hrs 7 days

Details of Depots Depot No.

epot No.	Depot Type	Goods Stored in Depot	Qty
1	MAGAZINE	Class 1.1d UN 0241 EXPLOSIVES BLASTING TY UN 0042 BOOSTERS	4000 kg 1000 kg 200 No.
2	MAGAZINE	Class 1.1b UN 0360 DETONATOR ASSEMBLIES, UN 0029 DETONATORS, NON-ELECTR	1100 No. 400 No. 300 No.
4	UNDERGROUND TANK	Class 3 UN 1203 PETROL	15000 L 14700 L
	UNDERGROUND TANK	Class 3 UN 1203 PETROL	15000 L 14000 L
			8


THE NEW SOUTH WALES GOVERNMENT PART A ople first by managing better **VORKCOVER AUTHORITY** LICENCE TO KEEP DANGEROUS GOODS (Dangerous Goods Act 1975) Application for new licence, amendment or transfor ACN 1. Name of applicant 879 100-301-LAD CONCRETE (---GATEL 2. Site to be licensed Street No 20 MALGOOX QD Postcode Suburb/Town 2766 ELSTERN CREEK 3. Previous licence number (if known) 35 019865 2 5 OCT 1995 HADD ROOK ROADELY & CRUSH SCIENTIFIC SERVICES 4. Nature of site BRANCH 5. Emergency contact on site: Name Phone MARTIN JENDE BOB (625 Sallo RAND 90 24 Days per week Hours per day 6. Site staffing: + SECURITY 1C1 + AMPOL 7. Major supplier of dangerous goods LTD 8. If new site or significant modification Date stamped Accredited consultant's name: Plan stamped by: ×-10 DATA 4 9. Number of dangerous goods depots at site 30 OCT 1995 10. Trading name or occupier's name FN Loof 5 Manger Concrete Postcode Suburb/Town 11.Postal address of applicant 2770 IT IDUIT VUACE 70 Box 142 12.Contact for licence enquiries: Name Fax Phone (ca) 625 5026 (ca) 625 8435 MENDE 1 LADTIN I certify that the details contained in this application (or the accompanying computer disk) are true and correct Date 23-10-95 13. Signature of applicant 31 OCT 1995

Please complete attached site sketch, depot listing and check sheet (if required) and return to WorkCover Authority in envelope provided.

Form DG1

Please carefully read the instructions in Part B of the guide before sketching the site.

PART B

PARTC

Complete 1 section per depot

CHEMICAL STORAGE

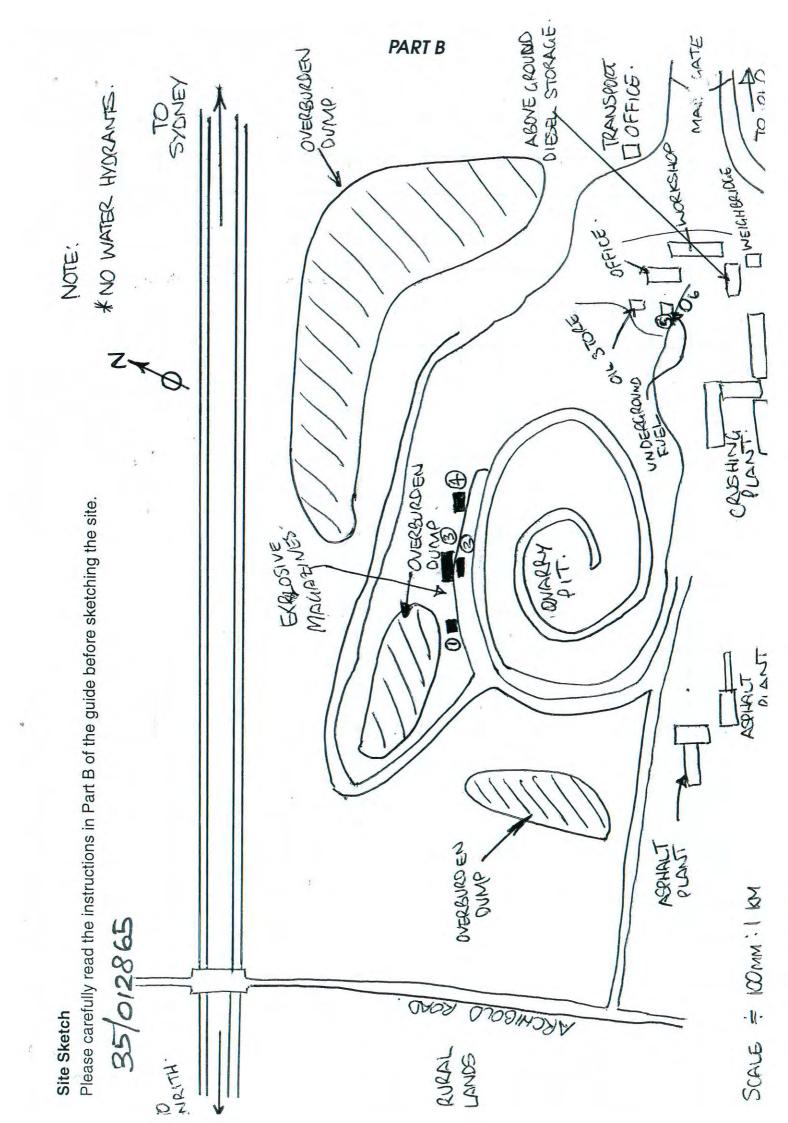
If you have more depots than the space provided, photocopy sufficient sheets first.

Depot number	Type of depot		(Class	Licensed maxi storage capa		
1	Explosive Magazin	i j	,	1.1	Acco kg		
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Uniteg L, kg, m
0241	Explosive Basting TVD: E	1.10	1	NA	Paurlyn Magner	1000	kg
0042	Bassies what Detaward	i.,D	-1-	~10	PEIMERS	200	Units

Depot number	Type of depot	Class	Licensed r storage o	
2	and and the second second	the second second		3.
UN number	, Shipping name	Pkg. Class Group EPG	Product or common name	Typical Uniteg. quantity L, kg, m ³
	MON ELECTRIC	- Balante	Accounts	
	u			

Depot number	Type of depot			Class	Licensed maxi storage capa		
3	U-DERGROUND TAK			3	15 000 L	ares	
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Uniteg L, kg, m
1203	MOROR 3012.77	3	II	Xos	UNEADED PAROL	14-700	L

Depot number	Type of depot			Class	Licensed maxir storage capac		
À	Undergeoure There	_		3	15000 Lm	P\$	
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Uniteg L, kg, m
1203	More Spier	3	11	Xo	Unano Pana	14.000	-


If you have more depots than the space provided, photocopy sufficient sheets first.

Depot number	Type of depot		(Class	Licensed maxir storage capac		Areila
2	Explosive Magazin	15	1	- 1	1100 00.75		
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Unite L, kg, r
0360	Detensive Averablics	1.1B	-12	-1-	PRIMADERS TRUME LINE DELAYS	200	5-10
ංෂ්ය	·* ````````````````````````````````````	b	~14	-12	PRIMADETS	200	UNE
0029	Dorowralls	B	~h	~1~	No 8 Dianas	300	JAN
	and a second as a second			+		a	
	dagt Mant - e tre marke				······································	n ng samangalag a	.a.tops at the
							v

Type of depot	Class		
Shipping name	Pkg. Class Group EPG	Product or common name	Typical Uniteg quantity L,kg,m
MU			

Application for new licence, amen	(Dangerous Goods Act 1975
300/11/95	iamont or transfor
Name of applicant	ACN ·
PIONEER CONCRETE (NSW) PTY. LTD.	000-301-879
Site to be licensed No Street	<u>/ -s</u>
NONE OLD WALLGROVE ROAD.	
	stcode
EASTERN CREEK	2770
Previous licence number (if known) 35/012865	PLANT. \$ 1404
Nature of site HARD ROCK QUARRY + CRUGHING	
Emergency contact on site: Phone Name	
02) 625 5946 BOB GRAHAM GR	ver leghissa.
	3. Chattern T
Site staffing: Hours per day Days	per week
Major supplier of dangerous goods ICI + AMPOL	
If new site or significant modification	BAI
Plan stamped by: Accredited consultant's name:	2 6 JUI Date stamped
NIC	NA.
Number of dangerous goods depots at site 6	designed and the second s
Trading name or occupier's name	
PIONEER CONCRETE (NSW) PTV. LTD.	
Postal address of applicant Suburb	
	ORUTT VILLAGE 2770
	man vicional LIN
Contact for licence enquiries:	
Phone Fax Name	

Please complete attached site sketch, depot listing and check sheet (if required) and return to WorkCover Authority in envelope provided.

PARTC

10

Complete 1 section per depot

CHEMICAL STORAGE

It so have more depots than the space provided, photocopy sufficient sheets first.

Depot number	Type of depot		(Class	Licensed maxir storage capac		
5	UNDERGROUND TR	suk	1	3	15 000 LITE	25	-
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Uniteg L, kg, m
1203	MOTOR SPIRIT	3	11	YES	UNLERDED PETROL	14700	L

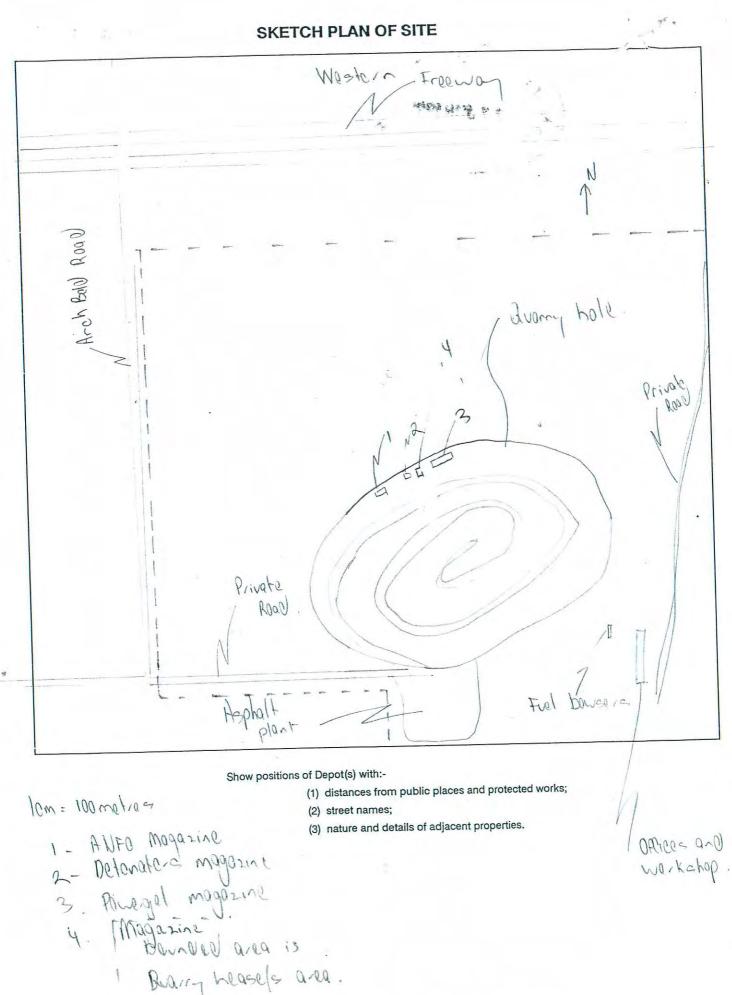
Depot number	T	ype of depot			Class	L	icensed maxi storage capa		
6	UNDERGROL	IND TAN	Κ.		3	15 00	O LITA	les- V	
UN number	Shipping	g name	Class	Pkg. Grou	p EPG	Produc	Contraction of the second	Typical quantity	Uniteg L, kg, m
1203	Motor	SPIRIT	3	1)	YES	UNLEADED	PETROL	14 000	L
100.00	the Local Mary Mary								

Depot number	Type of depot			Class	Licensed ma storage ca		
1	EXPLOSIVE MAGAZINE			1.1	4000 kg.	~	
UN number	Shipping name C	l Class G	Pkg. aroup	EPG	Product or common name	Typical quantity	Uniteg. L, kg, m ²
0082	EXPLOSIVES BLASTING TYPE E	1.10 ,	alc	Na	ANFO	2.000	kg.
			3.57				

Depot number	Type of depot		(Class	Licensed maxir storage capac		
4	EXPLOSIVES MAGAZINE		. 1	.1	2000 kg.	~	
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Uniteg. L, kg, m ³
0042	BOOSTERS WITHOUT DETONATORS	1.10	NA	N/A	PRIMERS	200 UN	1.75.
0241					POWERCIEL MAGNUM	1 500	kg.

Complete 1 section per depot

discripture.


If you have more depots than the space provided, photocopy sufficient sheets ist.

Depot number	Type of depot	1.1.2		Class	Licensed maxi storage capa	
3	EXPLOSIVES MAGAZINE		1	· (2000 kg.	
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical Unite quantity L, kg, r
0360	DETONATOR ASSEMBLIES, NON-ELECTRIC	1.1B	NA	NA	PRIMADETS TRUNK-UNE DELAYS	
0360	ir ir	1.18	NA		PRIMADETS	200 UNITS
0105	FUSE - SAFETY	1.45	NA	NA	SAFETY FUSE	3 ROLLS.
0029	DETONATORS Non-Electric	1.18	NA	NA	N°8. DETONATORS	300 UNITS
	5					
					A CONTRACTOR OF A CONTRACTOR	States and States

Depot number	Type of depot			Class		Licensed maxir storage capac	Contraction of the second second second	
2	EXPLOSIVES MAGAZINI	5		1.1		1100 kg.	\checkmark	
UN number	Shipping name	Class	Pkg. Group	EPG	Carlos and	Product or common name		iteg. g, m ³
0360	DETONATOR ASSEMBLIES NON- ELECTRIC	1.1B	MA	N/A	TR	PRIMADETS WNK LINE DELAYS	200 UNITS	
0360	24 H	1.13	NA	N/A	. (PRIMADETS	200 UNIT	5
1.1313	The second of the second second second		18.11	1 miles	10		3. 3. 2.15	-

ort			ORKCOVER AU		LICENCE No. 35 012 86 5
	APPLICATION		ICENCE (or AMENDMI E KEEPING OF DANGI	ENT or TRANSFER of LICENCE	
	ſ		E REELING OF DANGE	EROUS GOODS GOODS	apa
1				OF 73 & DePeter	ichever is not required)
Jan.	t. II (and know			A LOUL	
ame of Applicant in 1 - Explanatory no		P	INTER CONC	RETE NSW P	
rading name or occu name (if any)	upier's		As above	<u> </u>	· · · · · · · · · · · · · · · · · · ·
ostal Address				Mt DRUITT	Postcode 2770
ddress of the premis (Including Street N		Cm	Wallgrove R WAY	a 2 Gt Western	Hwy Postcode 2164
Vature of premises (S Explanatory notes -		· 6	WARRY		
elephone number o	f applicant	STD Cod	e 02	Number 625 0788	3
Particulars of type of	depots and maximum	quantitie	s of dangerous goods to be	e kept at any one time.	
	Type of depot			Dangerous goods	C&C
Depot number	(See item 3 - Explan notes - page 4)	atory	Storage capacity	Product being stored	Office use only
1	Underground To	ink	15000 L	SUPER	2 020 15×3
2 .	"	.i - 1	15000 L	UN LEADED FUEL	2 020 15x3
3					
4				-	
5				Entered	
6			L	ata Entered 04 Nov 91	3
7				04 11	
8					
9				A CONTRACTOR	
10					
11					
12					
Has site plan been a Dangerous Goods	approved by the Branch?	No No	If yes, no plans If no, please atta	required. ach site plan, or provide sketch plan ove by an accredited	rleaf. which has be
Have premises prev	iously been licensed?	No		ne of previous occupier, and licence No.	
Name of oil compar	ny supplying flammabl	e liquid (i	f applicable). Ar	POL	
For external evolosi	ives magazine(s), pleas	e fill in n	Signature of applicant	Li ghi Date	16 - 9 - 91
FOR OFFICE USE (uniz na		CERTIFICATE OF	- INSPECTION	
ι,	less the distance of a sec	mply with	being an	n Inspector under the Dangerous Goods Dangerous Goods Act, 1975, and the Da ods of the nature and in the quantity spe	ngerous Goods Regulation
with regard to their	situation and construc		ie reeping of dangelous go	Date	(

Form DOI		- 3-		C PAK	A	NZ			No	
I DI M COM		WORKCOVER AUTHORITY DANGEROUS GOODS ACT, 1975 LICENCE No. 35 - 0 12 86								
1 S	APPIIOG		~ MAN	DS ACT, 1975	ER of LIC			r		
	G	FOR TH	E KEEPING OF DAI	NGEROUS GOODS			76:5	7		
oived 15	11/90 24	27 304	taxi S			.*	10 1			
JAN EXF	10		and the second sec		(*	Delete whi	chever i	s not require	d)	
ame of Applican	nt in full (see Item ny notes - page 4)	Pier	nce - Conc	rete (We	(W	Pt-7	ht	0		
Trading name or occupier's name (if any)		Pioneer Concrete (NSW) Pty Ltd.								
Postal Address PF										
Address of the premises to be licensed. (Including Street No.)		Cnr Wallgrove Rd a Git Western Hwy WALLGROVE Postcode 2164								
Nature of premises (See Item 2 - Explanatory notes - page 4)		Quarry								
Telephone number of applicant		STD Code 02 Number 6250,789								
articulars of type	e of depots and maxim	um quantitie	es of dangerous goods to	o be kept at any one time	9.	<u> </u>				
Depot	Type of depot (See item 3 - Expl		Storage	Dangero	Dangerous goods					
number	notes - page 4		capacity	Product being stored			C&C Office use only 004 400			
1	Explosive)c	4000	Class	1.1	Explo	, 3	400	4>	
2	Ex plasin	125	1000	* <i>]\</i>	11	11	3	400	1×	
3	Explosue	9	2,000	N	И	N	3	400	2>	
4	Explosive	G	2,000	11	()	N	3	400	2x	
5	Flammable	Lig	20,000	Distilla	re			Exer	ul	
6	Flammahl	elig	20,000	Distillet	re			Expe	me	
7		V		see Poll	er er	elosee	l)		(.	
8										
9	1								_	
10						04				
11				DE 15 A	UG 19	91				
12				(
as site plan beer Dangerous Good	n approved by the ds Branch?	Yes No	lf yes, no plan lf no, please a	attach site plan, or provid	le sketch pl	lan overlea	If. whi	ch has	s, be	
ave premises pre	eviously been licensed?	Yes .	lf, yes, state na	ame of previous occupie	r, and licen	ted Ice No. (if I	con: known)	Sultan	±	
ame of oil comp	any supplying flammab	le liquid (if	٨					· · · · · · · · · · · · · · · · · · ·		
or external explo	sives magazine(s), plea		Signature of applicant ge 3.	+ 4 gla		Date	5-6	-91		
OR OFFICE USE	ONLY		CERTIFICATE C	FINSPECTION						
at the premises	described above do co	omply with	being a the requirements of the	an Inspector under the D Dangerous Goods Act, oods of the nature and in	1975, and	the Dange	rous Go	o hereby ce ods Regula	rtify tion	
Signature of	Asil	new -			defe	n Ote	iof i	listed	(

Application is hereby made fordescribed below.

*a licence (or amendment of the licence) *the transfer of the licence

for the keeping of dangerous goods in or on the premises

(*delete whichever is not required)

FEE: \$10.00 per Depot for new licence. \$10.00 for amendment or transfer

Name of Applicant in full (see over)	PIONEER CONCRETE (NSW) PTY LTD.	
Trading name or occupier's name (if any)	AS ABOUE. HEAD OFFICE 636ROUE STR. S	- D
Postal address	P.O. BOX 25 EASTERN CREEK	Postcode 2766
Address of the premises including street number (if any)	WALLGROUE ROAD ROOTY HILL.	Postcode
Nature of premises (see over)	ABOUE GROUND QUARRY.	rostcode
Telephone number of applicant	STD Code 02 Number 6259784.	
Particulars of type of denote and		

Particulars of type of depots and maximum quantities of dangerous goods to be kept at any one time.

Depot	Type of depot	depot Storage	Dangerous goods	C . c
number	(see over)	capacity	Product being stored	C & C Office use only
1	MAGAZINE.	4000 kg.		3008 420 0
2		1100 kg	Ammonium Nitrente & Distri Nitro compounds	
3	/	2000 kg	Junpewder	340013
4	1	2 Que ke	Blassling explosives	3400 23
5	1	2 aces kg	Diverting eseptosities	3400 2
6	1	2000 kgr		3400 23
7	vor derg round semk		0.11	340023
8		is see l	Petrel	20202
9		is all A		202024
10				
11				
12				

Has site plan been approved? If yes, no plans required. FREE No If no, please attach site plan. ATTACHED. (Yes) Have premises previously been licensed?

No

If yes, state name of previous occupier. ASABOUE

AMPBET

Name of company supplying flammable liquid (if any) ic / -

IMPERIA MICAL Signature of applicant ..

For external explosives magazine(s), please fill in side 2.

FOR OFFICE USE ONLY

CERTIFICATE OF INSPECTION

I, RAYMOND CHARLES MCRAFH being an Inspector under the Dangerous Goods Act, 1975, do hereby certify that the premises described above do comply with the requirements of the Dangerous Goods Act, 1975, and the Dangerous Goods Regulation with regard to their situation and construction for the keeping of dangerous goods of the nature and in

gnature of Inspector

Date ... 19. 5.81

INDUSTRIES

WALLGROVE QUARRY.

e No. 35012865.9

premises described below.	*delete whichever is not required)	11-111	121
FEE: \$10.00 per Depot	*delete whichever is not required) which a delete and a delete and a delete and a delete a de	alton	5607 L7/04/79 D3A
Name of Applicant in full (see over)	Surname Pioneer Conerer	Given Names) Pty Ltd
Trading name or occupier's name (if any)			
Postal address	63 Grove St. St	Poters	Postcode 20 44
Telephone number of applicant	STD Code	Number	Course of the second second
Address of the premises in or on which the depot or depots are situated (including street number, if any)	Pioneer Quarry car Waligrove Ra of Waligroo	Hhestern I	H/way Postcode 2164
Nature of premises (see over)			

PLEASE ATTACH SITE PLAN

Particulars of type of depots and maximum quantities of dangerous goods to be kept at any one time.

Depot	Type of depot	Storage	Dangerous goods				
number (see over)		capacity	Product being stored	C & C Office use only			
1	underground tank	15000 lites	mls	2.020.21			
2	underground touck	15000 litres	mis	2.020 24			
3	ineplosives magazine	1100 kg	hibocompounds	3.400.13			
4	explosives magazine		gunoowder exc	3-40023			
5	explosives magazine	2.000 kg	blasting explosives	1			
6	preplosives magasine	2.000 kg	1	13. 400.2			
7	× ×	~	~	3 400 23			
8							
9							
10							
11							
12							
ame of com	pany supplying flammable liquid (if a	any)		1			
ave premise	s previously been licensed?	Mes.					

If known, state name of previous occupier

alique

120

RAMA

Licence No.

Date.

Date

For external explosives magazine(s), please fill in side 2.

FOR OFFICE USE ONLY

Signature of applicant the

P19 34 CERTIFICATE OF INSPECTION

I, AAYMOND (ABR 21 APR/1966 Prof) being an Inspector under the Dangerous Goods Act, 1975, do hereby certify that the premises described above do comply with the requirements of the Dangerous Goods Act, 1975, and the Dangerous Goods Regulation with regard to their situation and construction for the keeping of dangerous goods of the nature and in the quantity specified.

Signature of Inspector

Name of Occupier	Pioneer Concrete (NSW) Pty Limited (Surname) (First Names)	
Trading Name (if any)		
Postal Address	63 Grove Street, ST.PETERS Postcode	2044
Address of the premises in which the depot or depots are situated	cnr Wallgrove Road & Western Highway, WALLGROVE Postcode	2164
Occupation	quarrying	
Nature of Premises	quarry	

Particulars of construction of depots and maximum quantities of inflammable liquid and/or dangerous goods to be kept at any one time.

Depot	Con	struction of dep	ots *	Inflamma	ble Liquid			Dan	gerous Go	ods		
No.	Walls	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m ³	Class 5A# litres	Class 5B# litres	Class 9 litres
1	under	ground ta	ank	15000			1					
2	under	ground to	ank	15000								
3												
4												
5												
6												
7							1					
8				1	1							
9										1		
10												
		TOTAL									1	
# I	f kept in tank nsert water ca Company su	apacity of ta	nks or cylind	lers.			anks.		BLIC			
	mises previou					12865	-1	(Dat Rece	Hoe No.	and the function of the little	17	45
					Pionee	r Qua	rries		iney)	Pty	Ltd	
If known	1. State name											
If known	i, state name		of applicant_	Va	Cl	Fras	\sim		Da	te 23	8-1.	- 76
If known	i, state name			Va	Cl	1	\sim		Da	te 23	Insp Meta	0.
If known	r, state name		of applicant _	Va	G.	Fras			Da	te 23	Ins	0.

PLEASE SKETCH SITE ON BACK OR ATTACH PLAN

requirements of that Act and regulations with regard to its situation and construction for the keeping of inflammabl liquid and/or dangerous goods in quantity and nature specified.

Signature of Inspector _______ Date ________

 Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Box R.216, Royal Exchange Sydney, N.S.W. 2000 and must be accompanied by the prescribed fee, as set out hereunder: Registration of Premises (Fee \$3.00 p.a.) – For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.
 In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil words Mineral Uil. Store License, Div. A (Fee, \$6.50 p.a.) – For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes 1, 2 and 9. Store License, Div. B (Fee, See Regulation 7) – For quantities exceeding 4,000 gallons of mineral spirit, and/or dangerous goods of Classes 1 and 2, and/or dangerous goods of Class 3. For the keeping of Dangerous Goods of Classes 3 and/or 4 (\$15.00 - -) Fees for the keeping of inflammable liquid and dangerous goods in excess of the above stated quantities and also for Liquid Petroleum Gas storage are set out in Regulation 7. 1. Name of occupier including full christian names. PIONEER QUARRIES (SYDNEY) PTY LTD 2. Trading Name (if any) 3. Locality of the premises in which the depot Corner No. or Name or depots are situated Wallgrove Rd & Western Postcode ____ 4. Postal address 5. Occupation 6. Nature of premises (dwelling, garage etc.) 7. Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods to be kept at any one time. PLEASE ATTACH PLAN OF PREMISES Inflammable liquid Construction of depots ' Dangerous goods Depot No. Class Class Class Class Class Class Mineral Mineral Walls Floor Roof 2 3 4 5A 9 spirit oil gallons gallons gallons gallons Ib cu ft water gal gallons 3000 1 INDERGROUND TANK 3000 2 V 3 4 5 6 JELIC RE FNI 7 Ct Q 8 9 Date) 10 proint * If product is kept in tanks describe depots as underground or aboveground tanks. Signature of applicant Date of application____ _, 19____

DIRECTIONS 1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Box R.216, Royal

CERTIFICATE OF INSPECTION

6.a 1, <u>I mare a</u> being an Inspector under the Inflammable Liquid Act, 1915 (as amended), do hereby certify that the premises or store herein referred to and described is suitable with regard to its situation and construction for the safe keeping of inflammable liquid and/or dangerous goods in quantity and nature specified.

yday. Place _

Signature of Inspector

Inflammable Liquid-

EXPLANATORY

Mineral Oil - includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same Mineral Spirit - includes petrol, benzene, benzolene, benzol and naphtha, and compositions containing same.

Dangerous Goods -

- Class 1 acetal, acetaldehyde, acetone, acrolein, amyl mercaptan, butyl acetate, butyl mercaptan, butyl propionate, crotonaldehyde, dichloro-ethylene, diethylketone, dioxane, diethylamine, dimethyl hydrozine, dipropylamine, divinyl ether, dipropyl ether, ethyl acetate, ethyl acrylate, ethyl chloride, ethyl ether, dichloroethane (ethylene dichloride), ethyl mercaptan, ethyl methacrylate, ethyl methyl ether, ethyl propyl ether, ethyl propionate, methyl propyl ketone, methyl acetate, methyl acrylate, methylal, methyl ethyl ethyl ethyl ketone, methyl methacrylate, methyl vinyl ketone, methyl vinyl acetate, piperidine, propanal, propyl acetate, propylamine, propylene oxide, pyridine, tetrahydrofuran, thiophene, triethylamine, valeraldehyde, vinyl acetate, vinyl allyl ether, vinyl butyl ether, vinyl butyrate, vinyl cyanide (acrylonitrile), vinylidene chloride, vinyl ethyl ether, vinyl propyl ether, vinyl propionate, any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit, manufactured products, containing organic solvents, having a true flashing point of less than 73 degrees Fahrenheit.
- Class 2 acetic acid, acetyl acetone, acetic anhydride, allyl alcohol, amyl acetate, amyl alcohol, butyl alcohol, butyl methacrylate, chlorobenzene, cyclohexanone, dibutyl ether, dibutyl ketone, dipentene, epichlorohydrin, ethanol (ethyl alcohol), ethyl benzene, ethylene diamine, furfural, mesityl oxide, methyl alcohol, methyl amyl ketone, methyl butyl ketone, pine oil (having a flashing point below 150°F), propyl benzene, propanol, vegetable turpentine, vinyl benzene (styrene monomer), any liquid containing more than 50 per centum ethyl alcohol, manufactured products, containing organic solvents, having a true flashing point of 73 degrees Fahrenheit and above but not exceeding 150 degrees Fahrenheit. and A 12865 to Dir B. to enfire 30/12/69.

Class 3 - nitro-cellulose moistened with an alcohol, nitro-cellulose product.

Class 4 - compressed or dissolved acetylene contained in a porous substance.

Class 5 (A) - liquefied inflammable gases (liquefied petroleum gas, vinyl chloride, ethylene chloride, ethylene oxide, butadine, methylamine, dimethylamine and trimethylamine). \$8-50. (anodnet) FEE

Class 9 - Carbon disulphide, ethyl nitrite.

Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Department of Mines, Sydney, and must be accompanied by the prescribed fee, as set out in Regulation 7.

Name in full of occupier 1.

- 2. Occupation
- Locality of the premises in which the depot or depots are 3. situated
- 4. Nature of premises (Dwelling, Garage, Store, etc.)

RAY 15	ITZPATRICK	QUARRIE
F	PTY LTD	<i><i>aoiiiiiiiiiiiii</i></i>
	Quangonos	tis.
No. or Name_	off. G. Wester	Porry
Street 9 07	A Wallyson	Rd.
Town	Mallyson.	
	Zucry	14 12 atu
Postcode	21	04 (2004

Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods to be kept at any one time 5.

Dent	Cons	truction of de	pots*	Inflammal	ole liquid			Dangerou	is goods		
Depot No.	Walls	Roof	Floor	Mineral Spirit gallons	Mineral Oil gallons	Class 1 gallons	Class 2 gallons	Class 3 1b	Class 4 cu [.] ft	Class 5 A water gallons	Class 9 gallon
bh	degro	LIJ	ank	3000							
2		_		3000							
3					-					1	
4											
5											
6	1						ren a . 8 1580 1	-		1 2 2000	1.
7							FUEL	IC R	0	NE 1	4/0.
8		1					Mussin Ga	ing.	\$	111	
9							(Date	2)	6	12/6	17
10							Recei	ot No.			anialas
If product	is kept in tank	s describe de	epots as und	erground or a	boveground	l tanks. Signa Posta	ture of Ap	plicant	ROVI ETEK	dren 5 5 T	hy

Mineral Oil—includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same. Mineral Spirit—includes petrol, benzene, benzolene, benzol and naphtha, and compositions containing same.

Dangerous Goods

Class I .- Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit. and last

Closs 2	ened with an alcohol, butyl alcohol (also known as
"butanol "), methylated spirits, vegetable turpentine; and any liquid or solid con point of less than 150 degrees Fahrenheit.	ntaining methylated spirits, having a true flashing
Class 3.—Nitro-cellulose product.	int Aller the
Class 4.—Compressed or dissolved acetylene contained in a porous substance.	NO TEB 1905 Z

M1 1862 A. H. PETTIFER, COVERN T PRINTER.

DIRECTIONS

I. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, No. 4 Albert Street, off Phillip Street, Circular Quay, Sydney (Box 48, G.P.O.), and must be accompanied by the prescribed fee, as set out hereunder:-

- Registration of Premises (Fee £1 10s. 0d. p.a.).—For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.
- In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes I and 2 may be kept under the like conditions; reading Dangerous Goods of Class I for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil.
- Store License, Div. A (Fee, £3 5s. 0d. p.a.).—For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Gcods of Classes I and 2.
- Store License, Div. B (Fees, See Regulation 7).—For quantities exceeding 4,000 gallons of mineral oil and/or mineral spirit, and/or dangerous goods of Classes I and 2, and/or dangerous goods of Class 3. For the keeping of Dangerous Goods of Classes 3 and/or 4. (£7 10s. 0d. p.a.).

2. The certificate of inspection at foot hereof must be signed by an Inspector under the Inflammable Liquid Act, 1915-1953, or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area of Sydney, it is requested that such certificate be obtained prior to forwarding application. QUARRIES OTV ITD

I. Name in full of occupier	RAY FITZPATRICK
2. Occupation	METAL QUARRY
3. Locality of the premises in which the depot or depots are situated	No. or Name situated behind Wallyne Street hillby Bonn Willow
4. Nature of premises (Dwelling, Garage, Store, etc.)	Undergrand Lonk.
5. Will mineral spirit be kept in a prescribed underground tank depot?	YES

6. Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods to be kept at any one time.

	c	onstruction of Depot	s.	Inflamma	ble Liquid.		Dangero	us Goods.	
Depot No.	Walls.	Roof.	Floor.	Mineral Spirit. Gallons.	Mineral Oil. Gallons.	Class I. Gallons.	Class 2. Gallons.	Class 3. Ib.	Class 4. cub. ft.
	Unde	reround.	Jank	2000					
2	(/							
3									
4									-
5			-						
6									
7									
8									
9			-			2			
10				RAY	PITZPA	RICK	auar	IES PT	Y. LTD.
			S	ignature of	Applicant		enth	m	~
Date of A	Application	31 -1	- 1959		Address	11 Me	earth	TT	manubecretary.
						B	onks	tom	
			CERTIFICATE C	F INSPECT	ION.				
I, Liquid Act to its situa specified.	t, 1915–53, do h ation and constr	ereby certify that ruction for the safe	the premises or s e keeping of inflan	tora horain	roforrad to	and desay	ath and the second	the Land	nflammable th regard nd natu r e
Place			S	ignature of	Inspector				
Date		-		-					RN OVER

EXPLANATORY

Inflammable Liquid-

Mineral Oil-includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same. Mineral Spirit-includes petrol, benzene, benzolene, benzol and naphtha, and compositions containing same.

Danger, is Goods

Class 1.—Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit.

Class 2.—Nitro-cellulose (also known as "pyroxylin" and "collodion cotton") moistened with an alcohol, butyl alcohol (also known as "butanol"), methylated spirits, vegetable turpentine; and any liquid or solid containing methylated spirits having a true flashing point of less than 150 degrees Fahrenheit.

6 FEB 1957

Class 3 .- Nitro-cellulose product.

Class 4.-Compressed or dissolved acetylene contained in a porous substance.

DIRECTIONS

1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, No. 4 Albert Street, off Phillip Street, Circular Quay, Sydney (Box 48, G.P.O.), and must be accompanied by the prescribed fee, as set out hereunder:

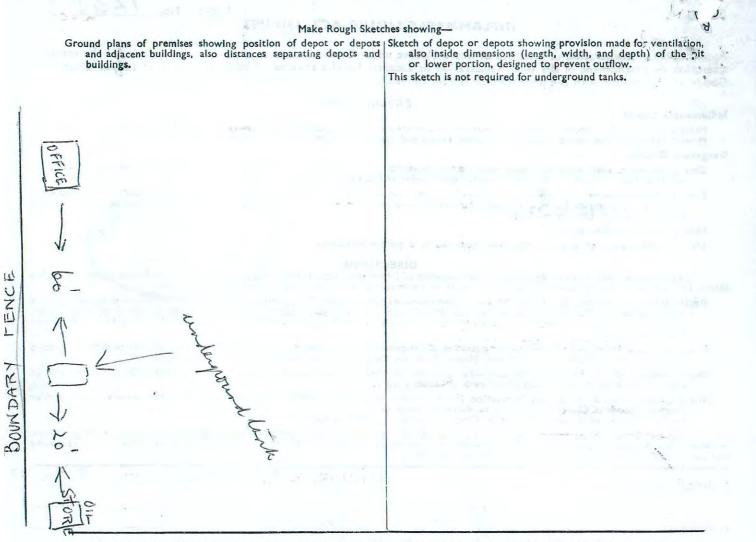
Registration of Premises (Fee £1 10s. 0d. p.a.).—For quantities not exceeding 300 gallons of mineral oll and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.

In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes I and 2 may be kept under the like conditions; reading Dangerous Goods of Class I for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil.

Store License, Div. A (Fee, £3 5s. 0d. p.a.).—For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes I and 2.

Store License, Div. B (Fees, See Regulation 7).—For quantities exceeding 4,000 gallons of mineral oil and/or mineral spirit, and/or dangerous goods of Classes I and 2, and/or dangerous goods of Class 3. For the keeping of Dangerous Goods of Classes 3 and/or 4. (£7 10s. 0d. p.a.).

2. The certificate of inspection at foot hereof must be signed by an Inspector under the Inflammable Liquid Act, 1915–1953, or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area of Sydney, it is requested that such certificate be obtained prior to forwarding application.

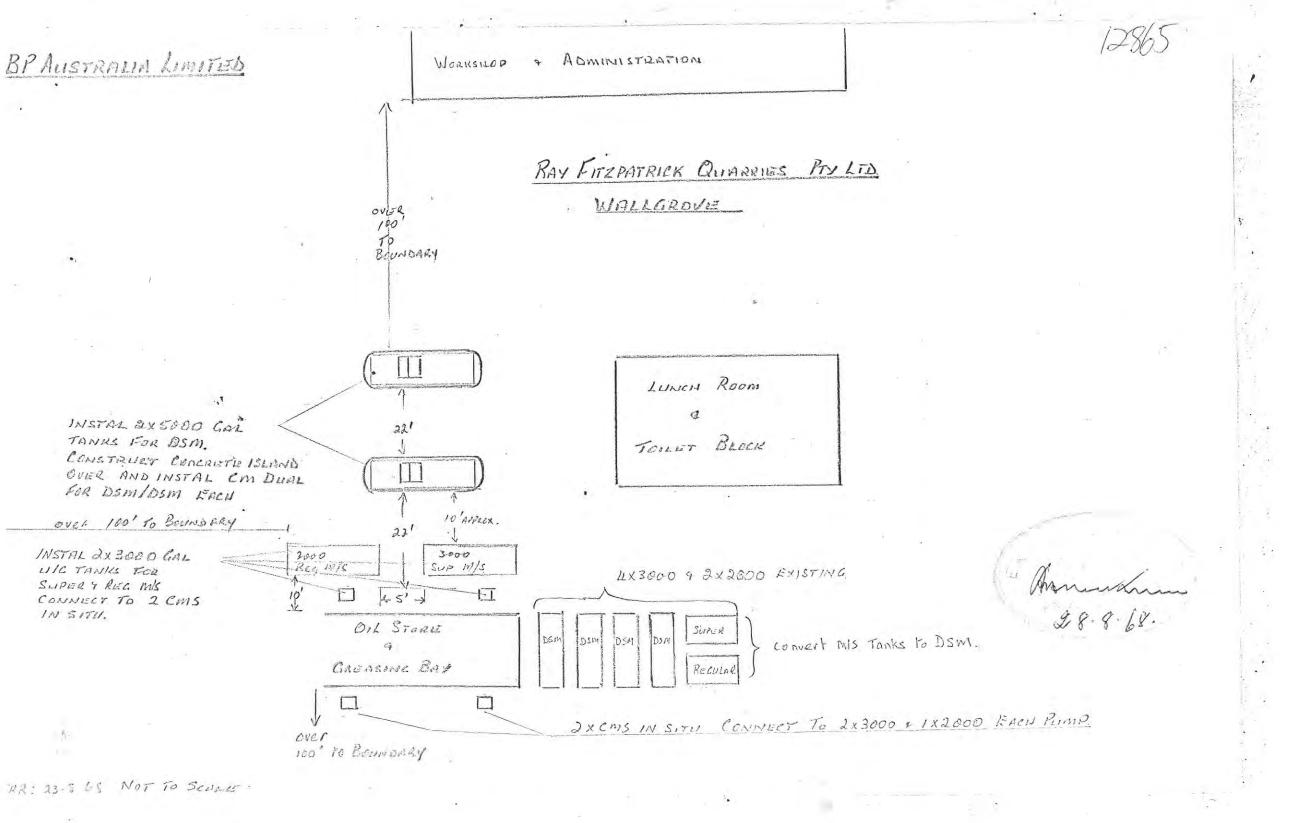

I. Name in full of occupier	NALLGROVE BLUE METAL QUARRY PTY LTD
2. Occupation	QUARRYING
3. Locality of the premises in which the depot or depots are situated	No. or Name
	Street
	Town
4. Nature of premises (Dwelling, Garage, Store, etc.)	- wany
5. Will mineral spirit be kept in a prescribed underground tank depot?	
6. Particulars of construction of depots and maximum quantities of ir	nflammable liquid and/or Dangerous Goods to be kept at any one time.

	Cons	truction of Depots.		Inflammab	ole Liquid.		Dangerous	Goods.	
Depot No.	Walls.	Roof.	Floor.	Mineral Spirit. Gallons.	Mineral Oil. Gallons.	Class I. Gallons.	Class 2. Gallons.	Class 3. Ib.	Class 4. cub. ft.
1	Under	ground	tank.	2,000			Bla	4	P
2						Put	lic Rive	ue Acci	5-5-0
4					-	(Dat	e) /	-2-	54
6						Ke	ceipt No.	117	
8	Dato on a	hich the	tank w	as first	filled	(:			
10					VALLGRO	VEBLU	EMETA	(GUA.	<u></u> -
			-	Signature of	Applicant		ut ho	an	Sec.
te of A	Application	H A	1957	Posta	al Address	14	Mered	3 on	holman
			CERTIFICATE	OF INSPECT	ION.		0		

being an Inspector under the Inflammable Liquid Act, 1915-53, do hereby certify that the premises or store herein referred to and described is suitable with regard to its situation and construction for the safe keeping of inflammable liquid and/or dangerous goods in quantity and nature specified.

Date

Place


TABLES SHOWING DISTANCES WHICH UNDER LICENSE MUST SEPARATE PROTECTED WORKS FROM DEPOTS. Table I.—Where Mineral Spirit and/or Dangerous Goods of Class I (with or without Mineral Oil and/or Dangerous Goods of Class 2) are kept or to be kept :—

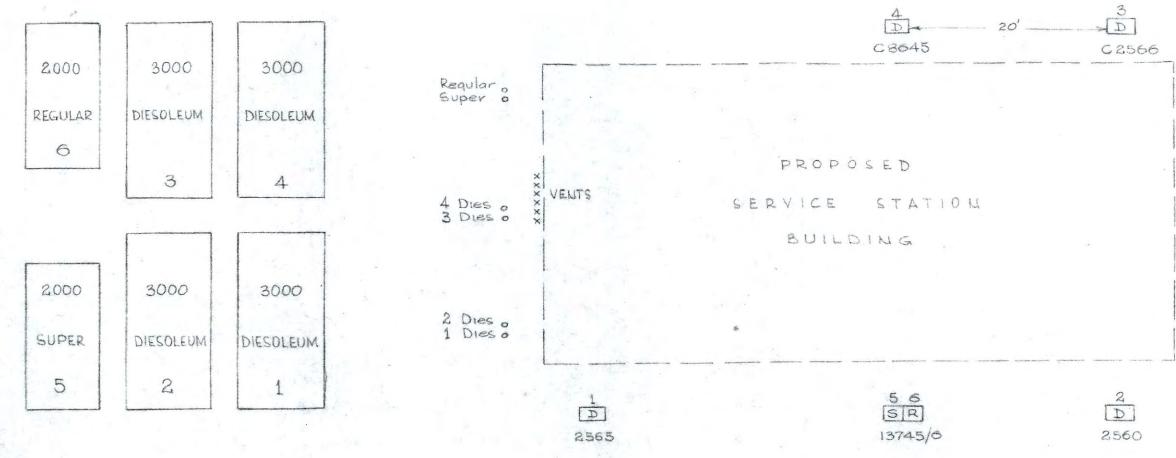

n an underground Tank Depot, in quantity exceeding 500 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot, separated from protected works by a screen wall, in quantity exceeding 100 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot not separated from protected works by a screen wall, in quantity exceeding 100 gallons, but not	Distance not less than—
Gallons. 2,000 2,400 2,400 3,200 3,600 4,000 10,400 13,600 16,800 20,000 24,000 24,000 24,000 26,000 28,000 30,000 30,000 40,000 80,000 100,000 and over.	Gallons. 1,000 1,200 1,200 1,400 1,600 2,000 3,600 5,200 6,800 8,400 10,000 11,000 12,000 13,000 14,000 15,000 16,000 20,000 80,000 160,000 10,00	Gallons. 250 300 350 400 450 500 900 1,300 1,700 2,100 2,500 2,750 3,000 3,250 3,500 3,750 4,000 5,000 10,000 20,000 80,000 120,000	Feet. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 30 40 50 50 75 100 115

Table II.-Where Mineral Oil and/or Dangerous Goods of Class 2 only are kept or to be kept :--

able II where Mineral Off a	nd/or Dangerous Goods of Class 2	only are kept of to be kept	St 8130
In an underground Tank Depot, in quantity exceeding 800 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot separated from protected works by a screen wall, in quantity exceeding 800 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot not separated from protected works by a screen wall, in quantity exceeding 800 gallons, but not exceeding—	Distance not less than—
Gallons.	Gallons.	Gallons.	Feet.
4,000 8,000 14,400 20,800 40,000 80,000 160,000 320,000 and over	2,000 4,000 7,200 10,400 20,000 40,000 80,000 660,009	1,000 2,000 3,600 5,200 10,000 20,000 40,008 80,000	10 15 16 17 20 30 40 50

FENCE 660' 1 5 PROPOSED TANK AREA 270' 200 2×6000 Existing Norkshop 70' × 220' 2 × 5000 2×3000 SHED. Dies. Dem M/S-DEM Dies . Dem 1×6000 2×3000 1×6000 PIONEER CONCRETE - WALLGROVE PROPOSED PUMP AND TANK LAYOUT. PLOSIVES DE PASSED DRAWN MP, SCALES CHECKED APPROVED DATE DRAWING No. BP AUSTRALIA LIMITED NSW 7 NEW SOUTH WALES STATE AMENDMENTS DRN. APP. ISSUE

between tanks r 30' to boundaries or stacted works

AMENDMENTS

DRN. APP.

RAY FITZP OFF HORSLEY WALGROVE DRAWN DL

SCALES

BP A NEW

So the case

RAY FITZPATRICK QUARRIES PTY LTD OFF HORSLEY ROAD WALGROVE

	D	APPROVED	CHECKED			
	9.63	DATE	Scole	it to .		
•. 50	DRAWING No.		RALIA LIMI	And Branch der		
	ISSUE	211	SOUTH WALES BRAN			

APPENDIX X

CHAIN OF CUSTODY

New South Wales Office: A. D. Envirotech Australia Pty Ltd

A. D. Envirotech Australia Pty Ltc Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **74** of **75**

			E	Inviron	menta	I and OHS La	borat	ory											
CLIENT:	The Next Ge	neration (TNG)						LABC	DRAT	ORY	JOB I	NO.:			7773				
								SAM	PLER	RS:	D. Ja	ames,	K. Fi	nnert	y, P E	dmu	nds		
				SEND INVO	CE TO:			PHO			FA		_			_	MAIL		
DATA NEED	ED BY:	Standard	-	REPORT NE	EDED BY:	Standard		REPO	ORT I	FORM	IAT:	HAR	D:	F	AX:			DISK:	E-MAIL:
		7773	QUOTE I																
P.O. NO.:		r	COMME	NTS/SPECIAL	. HANDLING/	STORAGE OR DISPOSAL:			1		-	—		ANAI	LYSIS	S REC	JUIRE	ED	
OR LAB US			-																
/es	AL	No	PM: EW		C: PE														
roken										<i>(</i> 0									
	DLER TEMP: deg.C		uite	uite	a.	etals	AHs	VTRH						NOTES					
		SAMPLE DA	TA	-	-	*CONTAINER DA	ATA	al S	al S	Pre	6M	P,	& <			OPF			
ample ID Lab Use)	Sample Nam	e	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	NO.	6 Metal Suite	8 Metal Suite	TCLP Prep	TCLP 6Metals	TCLP PAHs	TRH &	втех	РАН	OCP/OPP			
	7773-BH-01A	A	soil	27.06.14	N/A	Glass jar no pres.		1	Х				х		х	х			
	7773-BH-02A	A	soil	27.06.14	N/A	Glass jar no pres.	:	2	Х				х		х	х			
	7773-BH-03A	A	soil	27.06.14	N/A	Glass jar no pres.	;	3	х				х		Х	х			
	7773-BH-04A	A	soil	27.06.14	N/A	Glass jar no pres.		4	Х				х		х	х			
	7773-BH-05A	A	soil	27.06.14	N/A	Glass jar no pres.	4	5	Х				х		х	х			
	7773-BH-06A	A	soil	27.06.14	N/A	Glass jar no pres.		6	Х				х		х	х			
	7773-BH-07A	A	soil	27.06.14	N/A	Glass jar no pres.		7	х				х		х	х			
	7773-BH-08A	A	soil	27.06.14	N/A	Glass jar no pres.	:	3	х				х		х	х			
	7773-BH-09A	A	soil	27.06.14	N/A	Glass jar no pres.		Ð	х				х		х	х			
	7773-BH-10A	A	soil	27.06.14	N/A	Glass jar no pres.	1	D	х				х		х	х			
	7773-BH-11A	A	soil	27.06.14	N/A	Glass jar no pres.	1	1	х				х		х	х			
	7773-BH-12A	A	soil	27.06.14	N/A	Glass jar no pres.	1:	2	х				х		х	х			
	7773-BH-13A	4	soil	27.06.14	N/A	Glass jar no pres.	1:	3	х				х		х	х			
	7773-BH-14A	A	soil	27.06.14	N/A	Glass jar no pres.	14	4	х				х		х	х			
	7773-BH-14A	A	soil	27.06.14	N/A	Glass jar no pres.	1	5	х				х		х	х			
	7773-BH-15A	A	soil	27.06.14	N/A	Glass jar no pres.	1	ô	х				х		х	х			
	7773-BH-16A	A	soil	27.06.14	N/A	Glass jar no pres.	1	7	х				х		х	х			

			1								 	-	
SP1-01A	soil	27.06.14	N/A	Glass jar no pres.	18	Х		Х	Х	Х			
SP1-02A	soil	27.06.14	N/A	Glass jar no pres.	19	х		х	Х	х			
SP1-03A	soil	27.06.14	N/A	Glass jar no pres.	20	Х		Х	Х	х			
SP2-01A	soil	27.06.14	N/A	Glass jar no pres.	21	х		х	Х	х			
SP2-02A	soil	27.06.14	N/A	Glass jar no pres.	22	х		х	Х	х			
SS-01	soil	27.06.14	N/A	Glass jar no pres.	23	х		Х	Х				
SS-02	soil	27.06.14	N/A	Glass jar no pres.	24	х		х	Х				
SS-03	soil	27.06.14	N/A	Glass jar no pres.	25	х		Х	Х				
SS-04	soil	27.06.14	N/A	Glass jar no pres.	26	х		х	Х				
7773-BR1	soil	25.06.14	N/A	Glass jar no pres.	27	Х		Х	Х	х			
7773-BR2	soil	25.06.14	N/A	Glass jar no pres.	28	х		Х	Х	х			
	1		1										

			E	nviron	menta	I and OHS La	borat	ory											
CLIENT:	The Next Ge	neration (TNG)						LABC	ORAT	ORY	JOB	NO.:			7773				
		, , , , , , , , , , , , , , , , , , ,						SAM			r		K. Fi	nnerty	/, P E	dmu	nds		
				SEND INVO	CE TO:			PHO	NE:		FA						MAIL:		
DATA NEEDI	ED BY:	Standard	ł	REPORT NE	EDED BY:	Standard		REPO	ORT I	FORM	IAT:	HARD	D:	F/	AX: [[DISK:	E-MAIL:
P.O. NO.:			COMME	NTS/SPECIAL	. Handling/	STORAGE OR DISPOSAL:								ANAL	YSIS	REC	UIRE	D	
FOR LAB US	E ONLY																		
COOLER SE	AL		PM: EW		C: PE														
Yes		No			U. PE														
Broken		Intact						0			<u>s</u>	s	-						
COOLER TE	MP: deg.C							Suite	Suite	de	leta	AH	TR			۵.			NOTES
SAMPLE D			TA			*CONTAINER DA	ΔTA	al o	al	Р	9N	<u>с</u>	~ ×			OPI			
Sample ID (Lab Use)	Sample Nam	e	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	NO.	6 Metal Suite	8 Metal Suite	TCLP Prep	TCLP 6Metals	TCLP PAHs	ткн & уткн	BTEX	PAH	OCP/OPP			
	SW-01		water	27.06.14	N/A	1L Glass		1					Х		Х				
	SW-02		water	27.06.14	N/A	1L Glass		2					х		х				
	SW-03		water	27.06.14	N/A	1L Glass	:	3					х		х				
	SW-04		water	27.06.14	N/A	1L Glass		4					Х		Х				
	7773-SW-BR	1	water	27.06.14	N/A	1L Glass	:	5					Х		Х				
									<u> </u>									_	
						1				I								1	

			E	nviron	menta	I and OHS La	borate	ory												
CLIENT:	The Next Ge	neration (TNG)						LABC	DRAT	ORY	JOB N	10.:		7	773					
		× ,						SAM				mund	s							
				SEND INVOI	CE TO:			PHO	NE:		FAX	(:				E-N	1AIL:			
DATA NEEDE	D BY:			REPORT NE	EDED BY:			REPO	ORT F	ORM	AT:	HARD	:	FA	x: [D	ISK:		E-MAIL:
		7773	QUOTE	NO.:																
P.O. NO.:			COMME	NTS/SPECIAL	HANDLING/	STORAGE OR DISPOSAL:								ANAL	rsis	REQ	UIRE	D		
FOR LAB USE	ONLY																			
COOLER SEA	L		PM: EW		C: PE										/ity					
Yes		No			0.12										lotiv					
Broken		Intact						υ	e		als	s			ndu					
COOLER TEMP: deg.C SAMPLE DA							Suit	Suit	de	Met	PAHs			ŭ	م				NOTES	
O a maralla ID	SAMPLE DA		TA	1	1	CONTAINER DA	ATA	ala	etal	РР	P 6	<u>а</u>		×	trice	ΝÓ			-	
(Lab Use)	Sample Nam	е	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	NO.	6 Metal Suite	8 Metal Suite	TCLP Prep	TCLP 6Metals	TCLP	Hd	BTEX	Electrical Conductivity	оср/орр				
<u> </u>	SW-01A		water	21.07.15	N/A	1L Plastic	1						х		х					
	SW-01B		water	21.07.15	N/A	1L Plastic	2	2					х		х					
	SW-02A		water	21.07.15	N/A	1L Plastic	3	3					х		Х					
	SW-02B		water	21.07.15	N/A	1L Plastic	4	Ļ					х		Х					
								_												
								-												
									1											

			E	Inviron	menta	I and OHS La	borate	ory											
CLIENT:	The Next Ge	neration (TNG)						LABC	RAT	ORY 、	JOB N	10.:			7773				
	•							SAM	PLER	S:	D. Ja	imes,	K. Fi	nnert	y, P E	dmu	nds		
				SEND INVOI	CE TO:			PHO	NE:		FAX	X:				E-N	MAIL:		
DATA NEEDE	ED BY:	Standard	ł	REPORT NE	EDED BY:	Standard		REPO	ORT F	ORM	AT:	HARD	D:	F.	ax: [C	DISK:	E-MAIL: 🗌
		7773	QUOTE	NO.:															
P.O. NO.:			COMME	NTS/SPECIAL	HANDLING/	STORAGE OR DISPOSAL:		ANALYSIS REQUIRE						UIRE	D	 			
FOR LAB US																			
COOLER SE	AL		PM: TL		C: PE														
Yes		No																	
Broken		Intact						fe	te		als	မ	H						NOTES
COOLER TEI	MP: deg.C					*CONTAINER DA	τA	6 Metal Suite	8 Metal Suite	TCLP Prep	TCLP 6Metals	TCLP PAHs	VTRH			ЬЬ			NUTES
Sample ID		SAMPLE DAT		r	r	CONTAINER DA		etal	eta	<u>д</u>	Р 6	Ъ	+	X	Ŧ	оср/орр			
(Lab Use)	Sample Nam	e	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	NO.	6 M	8	TCL	TCL	TCI	TRH + '	втех	PAH	OCF			
	Rinsate-01		water	27.06.14	N/A	Glass jar no pres.	1						х		х				
	Rinsate-02		water	27.06.14	N/A	Glass jar no pres.							Х		Х				
	VOC blank 1		Liquid	27.06.14	N/A	Glass vial	2							х					
	VOC spike 1		Liquid	27.06.14	N/A	Glass vial	3							х					
	VOC blank 2	2	Liquid	27.06.14	N/A	Glass vial	4							х					
	VOC spike 2		Liquid	27.06.14	N/A	Glass vial	5							х					
			Ī					1											

				A	ABI Laborator	у			
CLIENT:	A.D. Envirotech Aust	ralia Pty Ltd						JOB NO.:	7773
POSTAL ADDR	RESS: 4/10-11 Millenni	um Ct, Silverwater	NSW 2128					SAMPLERS:	D, James, K Finnerty, P Edmunds
								REPORT FOR	MAT: DISK: E-MAIL:
INFORMATION	I NEEDED FOR REPO	DRT: Standard						-	
CLIENT:			The Next Genera	tion					
JOB LOCATIO	N:				Eastern Creek				
	SAMPLE DAT	A	SAM	PLES SUBMITTED	DATA N	EDED		_	
Sample ID (Lab Use)	Sample Name	MATRIX	DATE	TIME	DATE	TIME	No		NOTES
					3.07.204		1		
	ASB-01	Soil	27.06.2014	14:45 14:45	3.07.204	12:00	2		
	ASB-02	Soil	27.06.2014	14:45	3.07.204	12:00	3		
	ASB-03 ASB-04	Soil	27.06.2014	14:45	3.07.204	12:00	4		
		Soil	27.06.2014	14:45	3.07.204	12:00	5		
	ASB-05	Soil	27.06.2014 27.06.2014	14:45	3.07.204	12:00	6		
	ASB-06	FC	27.06.2014	14.45	3.07.204	12.00			

A. D. Envirotech A	ustralia Pty Ltd		Chain	PM-F-07 of Custody and Orc	ler (External)			Page: 1 of 2 Date: 26/06/2014	
Job Number: 7773									
From: Unit 4, 10-11 Millennium Co Silverwater NSW 2128 Phone: (02) 9648 6669 Email: info@ADenviro.com.	urt,	To: Eurofins Unit F3-6 Bldg F 16 Mars Rd Lane Cove I Attention:	NSW 2066		A		ADE		
Sampler: D. Jones print no	me sigi	nature	Date: 25.06	5.2014	A.	D. Enviro	tech Austra	ulia Pty Lte	1
Delivery: D. Jones print na	me sigi	nature	Date: 27.0	6.2014 Receive	d for Laboratory:	print nar	ne si	gnature	Date:
	-			SAMPLE DETAI	LS	·		-	
Laboratory	ADE	Sample Type	Container			Analy	sis Required		
Sample ID	Sample ID			8 metals	TRH	PAH	OCC/OPP	Phenols	PCB's
	7773-SP1	Soil		x	x	x	x		
	7773-SW-01	Water		x					
	7773-SW-02	Water		x					
	7773-SW-03	Water		x					
	7773-SW-04	Water		x					
	7773-SP1-01A	Soil						x	x
	7773-SP1-02A	Soil						x	x
	7773-SP1-03A	Soil						x	x

A. D. Envirotech Australia Pty Ltd	PM-F-07	Page: 2 of 2
A. D. Envirotech Australia Pty Ltu	Chain of Custody and Order (External)	Date: 26/06/2014

Job Number: 7773

7773-SP2-01A	Soil			x	x
7773-SP2-02A	Soil			x	x
7773-SW-BR1	Water	x			
7773-Rinsate- 01	Water	x			

Further instructions:

1. Please provide PQLs below the health-based investigation levels published in NEPC Guidelines (Table 5A) for soil samples:

Analyte	PQLs, mg/kg
Heavy Metals Screen (As, Be, Cd, Cr, Pb, Hg, Mo, Ni, Se, Ag)	5 (except for Cd – 1, Hg – 0.1)
OCPs	1
PAHs individual	0.5 (except for Benzo(a)Pyrene – 0.1)
PCBs	1
Total Phenols	1
CN	1
ТРН	250
BTEX	0.2, 1, 1, 3
SPOCAS - POCAS, % Sulfur oxidisable (oven dry basis)	0.3

2. Please send back COC/ORDER and SRA.

3. Please analyse all samples on 5 DAY turnaround time and report results to info@adenvirotech.com.au, p.edmunds@adenvirotech.com.au, e.webb@adenvirotech.com.au & d.jones@adenvirotech.com.au

4. Please keep samples in refrigerated condition for 3 months.

A. D. Envirotech Australia Pty Ltd			Chain	PM-F-07 of Custody and Or	der (External)			Page: 1 of 2 Date: 26/06/2014	
Job Number: 7773									
From: Unit 4, 10-11 Millennium Co Silverwater NSW 2128 Phone: (02) 9648 6669 Email: info@ADenviro.com.	urt,	To: Eurofins Unit F3-6 Bldg F 16 Mars Rd Lane Cove I Attention:	NSW 2066		A		ADE		
Sampler: P. Edmunds print na	me sigi	nature	Date: 21.07	2.2014	А.	D. Enviro	otech Austra	alia Pty Lt	td
Delivery: P. Edmunds print na		nature	Date: 21.07	7.2014 Receive	ed for Laboratory:	print na	me sig	gnature	Date:
			9	SAMPLE DETA	ILS				
Laboratory	ADE	Sample Type	Container			Analy	ysis Required		
Sample ID	Sample ID			Alkalinity CaCo3	TRH	РАН	OCC/OPP	Phenols	PCB's
	7773-SW-01A	Water		x					
	7773-SW-01B	Water		x					
	7773-SW-02A	Water		x					
	7773-SW-02B	Water		х					
		1					1		

Further instructions:

1. Please provide PQLs below the health-based investigation levels published in ANZECC Guidelines for Water samples:

A. D. Envirotech Australia Ptv Ltd	PM-F-07	Page: 2 of 2
A. D. Envirotech Australia Pty Etu	Chain of Custody and Order (External)	Date: 26/06/2014

Job Number: 7773

Analyte	PQLs, mg/L
CaCo3	20

2. Please send back COC/ORDER and SRA.

3. Please analyse all samples on 24 HOUR turnaround time and report results to info@adenvirotech.com.au, p.edmunds@adenvirotech.com.au, e.webb@adenvirotech.com.au & t.lobsey@adenvirotech.com.au

4. Please keep samples in refrigerated condition for 3 months.

APPENDIX XI

CALIBRATION CERTIFICATES

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Queensland Office: A. D. Envirotech Australia Pty Ltd P.O. Box 288 Upper Coomera, QLD 4209 **Telephone:** NSW: (02) 9648 6669 QLD: (07) 5519 4610 Internet: site: <u>www.ADenvirotech.com.au</u> e-mail: <u>info@ADenvirotech.com.au</u> **ABN:** 520 934 529 50

Page **75** of **75**

Calibration and Service Report – PID

Company: Contact: Address: Phone:

Fax:

Email:

ADE Consulting Group Ross Nefodov 4/1-3 Majors Bay Road CONCORD, NSW 2137 02 9739 6633 02 9401 0097 ross@adenviro.com.au

 Manufacturer:
 RAE Systems

 Instrument:
 MiniRAE Lite

 Model:
 PGM 7350

 Configuration:
 VOC

 Wireless:

 Network ID:

 Unit ID:

 Details:
 pumped

 Serial #:
 595-000254

 Asset #:

 Part #:
 059-A126-000

 Sold:
 14/10/2010

 Last Cal:
 26/03/2012

 Job #:
 AES.025206

 Cal Spec:
 VOC

 Order #:
 VOC

Dattam:	Test	Pass/Fail	Comments	Part Code	S/W
Battery Nic	Cd, NiMH, Dry cell, Li Ion	1	SN: 159MW0293		
	harger, Power supply	1			
	adle	1			
Pump Flo	wo	1	> 450 ml/min		
Filter Filt	ter, fitting, etc	x	Fitted external filter	002-3022-000	1
	udible, visual, vibration	1			
	peration	1			
Switches Op	peration	1			
PCB Op	peration	1			
Connectors Co	ondition	1			
Firmware Ve	ersion	1	Version 1.05B		
Datalogger Op	peration	1			
	ondition	1			
	ondition/Type	1			
Sensors					
PID La	mp	1			
PID Se	ensor	1			
THP Se	ensor	1			
				Calibration	1
		Engine	er's Report		
			ind calibration.		

Calibration Certificate

Sensor Type	Serial No	Span Gas	Concentration	Traceability	CF	Reading		
				Lot #		Zero	Span	
PID	10.6ev	2M402021	Isobutylene	100 ppm	S21306		0	100
								-
								-
						-		

Date:

Calibrated/Repaired by:

Bill Knobel

25 February 2014

Next Due:

25 August 2014

sales@	aesolutions.co	om.au	ISO 9001:2008 CERTIFIED		www.aesolution	is.com.au
Melbourne Syd ney Parth Brisbane	Head Office S14 Lyl2 Unit 6 Unit 17	2 Merchant Aren 6-8 Holden Strø 41 Holder Way 23 Ashtan Place	ASHRELD MALAGA	OWN VX 3074 NSW 2131 WA 6090 QLD 4014	T: +(613) 9464 2300 T: +(612) 9716 5966 T: +(618) 9249 5663 T: +(617) 3267 1433	F:+ (612) 9716 5986